Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 562
Filter
1.
Planta ; 260(2): 41, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954109

ABSTRACT

MAIN CONCLUSION: In this study, six ZaBZRs were identified in Zanthoxylum armatum DC, and all the ZaBZRs were upregulated by abscisic acid (ABA) and drought. Overexpression of ZaBZR1 enhanced the drought tolerance of transgenic Nicotiana benthamian. Brassinosteroids (BRs) are a pivotal class of sterol hormones in plants that play a crucial role in plant growth and development. BZR (brassinazole resistant) is a crucial transcription factor in the signal transduction pathway of BRs. However, the BZR gene family members have not yet been identified in Zanthoxylum armatum DC. In this study, six members of the ZaBZR family were identified by bioinformatic methods. All six ZaBZRs exhibited multiple phosphorylation sites. Phylogenetic and collinearity analyses revealed a closest relationship between ZaBZRs and ZbBZRs located on the B subgenomes. Expression analysis revealed tissue-specific expression patterns of ZaBZRs in Z. armatum, and their promoter regions contained cis-acting elements associated with hormone response and stress induction. Additionally, all six ZaBZRs showed upregulation upon treatment after abscisic acid (ABA) and polyethylene glycol (PEG), indicating their participation in drought response. Subsequently, we conducted an extensive investigation of ZaBZR1. ZaBZR1 showed the highest expression in the root, followed by the stem and terminal bud. Subcellular localization analysis revealed that ZaBZR1 is present in the cytoplasm and nucleus. Overexpression of ZaBZR1 in transgenic Nicotiana benthamiana improved seed germination rate and root growth under drought conditions, reducing water loss rates compared to wild-type plants. Furthermore, ZaBZR1 increased proline content (PRO) and decreased malondialdehyde content (MDA), indicating improved tolerance to drought-induced oxidative stress. The transgenic plants also showed a reduced accumulation of reactive oxygen species. Importantly, ZaBZR1 up-regulated the expression of drought-related genes such as NbP5CS1, NbDREB2A, and NbWRKY44. These findings highlight the potential of ZaBZR1 as a candidate gene for enhancing drought resistance in transgenic N. benthamiana and provide insight into the function of ZaBZRs in Z. armatum.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Plants, Genetically Modified , Zanthoxylum , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Zanthoxylum/genetics , Zanthoxylum/physiology , Zanthoxylum/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/drug effects , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Multigene Family , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Drought Resistance
2.
PeerJ ; 12: e17532, 2024.
Article in English | MEDLINE | ID: mdl-38873643

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods: MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results: MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion: PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Isothiocyanates , Liver Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
3.
Nat Commun ; 15(1): 5294, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906885

ABSTRACT

Determining the balance between DNA double strand break repair (DSBR) pathways is essential for understanding treatment response in cancer. We report a method for simultaneously measuring non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). Using this method, we show that patient-derived glioblastoma (GBM) samples with acquired temozolomide (TMZ) resistance display elevated HR and MMEJ activity, suggesting that these pathways contribute to treatment resistance. We screen clinically relevant small molecules for DSBR inhibition with the aim of identifying improved GBM combination therapy regimens. We identify the ATM kinase inhibitor, AZD1390, as a potent dual HR/MMEJ inhibitor that suppresses radiation-induced phosphorylation of DSBR proteins, blocks DSB end resection, and enhances the cytotoxic effects of TMZ in treatment-naïve and treatment-resistant GBMs with TP53 mutation. We further show that a combination of G2/M checkpoint deficiency and reliance upon ATM-dependent DSBR renders TP53 mutant GBMs hypersensitive to TMZ/AZD1390 and radiation/AZD1390 combinations. This report identifies ATM-dependent HR and MMEJ as targetable resistance mechanisms in TP53-mutant GBM and establishes an approach for simultaneously measuring multiple DSBR pathways in treatment selection and oncology research.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Breaks, Double-Stranded , Glioblastoma , Temozolomide , Tumor Suppressor Protein p53 , Humans , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Glioblastoma/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , DNA Breaks, Double-Stranded/drug effects , Temozolomide/pharmacology , Cell Line, Tumor , Mutation , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , DNA Repair/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , DNA End-Joining Repair/drug effects , Mice , Phosphorylation/drug effects
4.
Eur J Pharm Biopharm ; 201: 114348, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844097

ABSTRACT

Nitric oxide (NO) / ß-Lapachone (Lap) combined therapy by causing oxidative stress is an effective tumor therapy strategy. Herein, a dual-responsive lipid nanoparticles (LNPs) LSNO for NO / Lap co-delivery were constructed from the zinc-coordinated lipid (DSNO(Zn)) and the hydrophobic drug Lap in the presence of helper lipids (DOPE and DSPE-PEG2000). The zinc-coordinated structure in LSNO might elevate the Zn2+ content in tumor cells, contributing to antioxidant imbalance. The fluorescent assays proved the light-triggered NO release and fluorescent self-reporting abilities of LSNO. In addition, the LNPs had good drug release behavior under high concentration of GSH, indicating the NO / drug co-delivery capacity. In vitro antitumor assays showed that the NO / Lap combination treatment group could induce more significant tumor cell growth inhibition and cell apoptosis than individual NO or Lap treatment. The following mechanism studies revealed that NO / Lap combination treatment led to distinct oxidative stress by producing reactive oxygen species (ROS) and peroxynitrite anion (ONOO-). On the other hand, the intracellular redox balance could be further disrupted by Lap-induced NADPH consumption and Zn2+ / NO-induced reductase activities downregulation, thus promoting the degree of cell damage. Besides, it was also found that NO and Lap could directly damage nuclear DNA and induce mitochondrial dysfunction, thereby leading to caspase-3 activation and tumor cell death. These results proved that LSNO could serve as a promising multifunctional tumor therapy platform.


Subject(s)
Nanoparticles , Naphthoquinones , Nitric Oxide , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Naphthoquinones/administration & dosage , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Nitric Oxide/metabolism , Nitric Oxide/administration & dosage , Humans , Nanoparticles/chemistry , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Drug Delivery Systems/methods , Drug Liberation , Zinc/chemistry , Zinc/administration & dosage , Neoplasms/drug therapy , Neoplasms/metabolism , Lipids/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
5.
Exp Ther Med ; 28(1): 292, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38827468

ABSTRACT

Spinal cord injury (SCI) is a severe neurological complication following spinal fracture, which has long posed a challenge for clinicians. Microglia play a dual role in the pathophysiological process after SCI, both beneficial and detrimental. The underlying mechanisms of microglial actions following SCI require further exploration. The present study combined three different machine learning algorithms, namely weighted gene co-expression network analysis, random forest analysis and least absolute shrinkage and selection operator analysis, to screen for differentially expressed genes in the GSE96055 microglia dataset after SCI. It then used protein-protein interaction networks and gene set enrichment analysis with single genes to investigate the key genes and signaling pathways involved in microglial function following SCI. The results indicated that microglia not only participate in neuroinflammation but also serve a significant role in the clearance mechanism of apoptotic cells following SCI. Notably, bioinformatics analysis and lipopolysaccharide + UNC569 (a MerTK-specific inhibitor) stimulation of BV2 cell experiments showed that the expression levels of Anxa2, Myo1e and Spp1 in microglia were significantly upregulated following SCI, thus potentially involved in regulating the clearance mechanism of apoptotic cells. The present study suggested that Anxa2, Myo1e and Spp1 may serve as potential targets for the future treatment of SCI and provided a theoretical basis for the development of new methods and drugs for treating SCI.

6.
J Transl Med ; 22(1): 587, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902737

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a serious global health burden because of its high morbidity and mortality rates. Hypoxia and massive lactate production are hallmarks of the CRC microenvironment. However, the effects of hypoxia and lactate metabolism on CRC have not been fully elucidated. This study aimed to develop a novel molecular subtyping based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs) and construct a signature to predict the prognosis of patients with CRC and treatment efficacy. METHODS: Bulk and single-cell RNA-sequencing and clinical data of CRC were downloaded from the TCGA and GEO databases. HRGs and LMRGs were obtained from the Molecular Signatures Database. The R software package DESeq2 was used to perform differential expression analysis. Molecular subtyping was performed using unsupervised clustering. A predictive signature was developed using univariate Cox regression, random forest model, LASSO, and multivariate Cox regression analyses. Finally, the sensitivity of tumor cells to chemotherapeutic agents before and after hypoxia was verified using in vitro experiments. RESULTS: We classified 575 patients with CRC into three molecular subtypes and were able to distinguish their prognoses clearly. The C1 subtype, which exhibits high levels of hypoxia, has a low proportion of CD8 + T cells and a high proportion of macrophages. The expression of immune checkpoint genes is generally elevated in C1 patients with severe immune dysfunction. Subsequently, we constructed a predictive model, the HLM score, which effectively predicts the prognosis of patients with CRC and the efficacy of immunotherapy. The HLM score was validated in GSE39582, GSE106584, GSE17536, and IMvigor210 datasets. Patients with high HLM scores exhibit high infiltration of CD8 + exhausted T cells (Tex), especially terminal Tex, and oxidative phosphorylation (OXPHOS)-Tex in the immune microenvironment. Finally, in vitro experiments confirmed that CRC cell lines were less sensitive to 5-fluorouracil, oxaliplatin, and irinotecan under hypoxic conditions. CONCLUSION: We constructed novel hypoxia- and lactate metabolism-related molecular subtypes and revealed their immunological and genetic characteristics. We also developed an HLM scoring system that could be used to predict the prognosis and efficacy of immunotherapy in patients with CRC.


Subject(s)
Colorectal Neoplasms , Lactic Acid , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Prognosis , Lactic Acid/metabolism , Gene Expression Regulation, Neoplastic , Male , Hypoxia/genetics , Hypoxia/metabolism , Tumor Microenvironment/genetics , Female , Cell Line, Tumor , Middle Aged , Cell Hypoxia/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
7.
J Proteomics ; 302: 105203, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38782357

ABSTRACT

Acute kidney injury (AKI) stands as a prevalent and economically burdensome condition worldwide, yet its complex molecular mechanisms remain incompletely understood. To address this gap, our study employs a multifaceted approach, combining mass spectrometry and RNA sequencing technologies, to elucidate the intricate molecular landscape underlying nephrotoxin-induced AKI in mice by cisplatin- and LPS-induced. By examining the protein and RNA expression profiles, we aimed to uncover novel insights into the pathogenesis of AKI and identify potential diagnostic and therapeutic targets. Our results demonstrate significant down-regulation of Slc34a1 and Slc34a3, shedding light on their crucial roles in AKI pathology and highlighting their promise as actionable targets for diagnosis and treatment. This comprehensive analysis not only enhances our understanding of AKI pathophysiology but also offers valuable avenues for the development of targeted interventions to mitigate its clinical impact. SIGNIFICANCE: Nephrotoxicity acute kidney injury (AKI) is a common clinical condition whose pathogenesis is the process by which some drugs, chemicals or other factors cause damage to the kidneys, resulting in impaired kidney function. Although it has been proved that different nephrotoxic substances can affect the kidney through different pathways, whether they have a commonality has not been registered. Here, we combined transcriptomics and proteomics to study the molecular mechanism of LPS and cisplatin-induced nephrotoxic acute kidney injury finding that the down-regulation of Slc34a1 and Slc34a3 may be a critical link in nephrotoxic acute kidney injury, which can be used as a marker for its early diagnosis.


Subject(s)
Acute Kidney Injury , Cisplatin , Down-Regulation , Proteomics , Transcriptome , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Animals , Mice , Proteomics/methods , Cisplatin/adverse effects , Cisplatin/toxicity , Lipopolysaccharides/toxicity , Male , Gene Expression Profiling
8.
Toxicol Lett ; 397: 163-173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754640

ABSTRACT

Lenvatinib is a multi-target inhibitor that exerts anti-tumor effects by inhibiting angiogenesis and is now commonly used as a first-line treatment for hepatocellular carcinoma. However, with the widespread use of lenvatinib, the problem of serious and fatal hepatotoxicity has become increasingly prominent. Currently, the mechanism behind this toxicity is not yet understood, and as a result, there is a lack of safe and effective intervention strategies with minimal side effects. Here, we established the model of lenvatinib-induced liver injury in vivo and in vitro and found that lenvatinib caused hepatotoxicity by inducing apoptosis. Further mechanistic studies in cellular models revealed that lenvatinib upregulated death receptor signaling pathway, which activated the downstream effector Caspase-8, and ultimately led to apoptosis. Meanwhile, lenvatinib-induced apoptosis was associated with ROS generation and DNA damage. In addition, after screening marketed drugs and natural products in combination with cellular modeling, we identified a potential co-administered drug, dabrafenib, which could alleviate lenvatinib-induced hepatotoxicity. Further mechanistic studies revealed that dabrafenib attenuated lenvatinib-induced hepatotoxicity by inhibiting the activation of the death receptor signaling pathway. Subsequently, cancer cell proliferation assays confirmed that dabrafenib did not antagonize the antitumor effects of lenvatinib. In conclusion, our results validate that apoptosis caused by the death receptor signaling pathway is the key cause of lenvatinib-induced hepatotoxicity, and dabrafenib alleviates lenvatinib-induced hepatotoxicity by inhibiting this pathway.


Subject(s)
Apoptosis , Chemical and Drug Induced Liver Injury , Imidazoles , Oximes , Phenylurea Compounds , Quinolines , Signal Transduction , Quinolines/pharmacology , Animals , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Oximes/pharmacology , Oximes/therapeutic use , Signal Transduction/drug effects , Phenylurea Compounds/pharmacology , Humans , Apoptosis/drug effects , Imidazoles/pharmacology , Mice , Male , Receptors, Death Domain/metabolism , Antineoplastic Agents/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Hep G2 Cells
9.
Nanoscale ; 16(22): 10566-10577, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38738335

ABSTRACT

Redox flow batteries (RFBs) are one of the most promising long-term energy storage technologies which utilize the redox reaction of active species to realize charge and discharge. With the decoupled power and energy components, RFBs exhibit high battery pile construction flexibility and long lifespan. However, the inherent slow electrochemical kinetics of the current widely applied redox active species severely impedes the power output of RFBs. Developing high performance electrocatalysts for these redox active species would boost the power output and energy efficiency of RFBs. Here, we present a critical review of nanoelectrocatalysts to improve the sluggish kinetics of different redox active species, mainly including the chemical components, structure and integration methods. The relationship between the physicochemical properties of nanoelectrocatalysts and the power output of RFBs is highlighted. Finally, the future design of nanoelectrocatalysts for commercial RFBs is proposed.

10.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712250

ABSTRACT

Mucosal melanoma (MM) is a deadly cancer derived from mucosal melanocytes. To test the consequences of MM genetics, we developed a zebrafish model in which all melanocytes experienced CCND1 expression and loss of PTEN and TP53. Surprisingly, melanoma only developed from melanocytes lining internal organs, analogous to the location of patient MM. We found that zebrafish MMs had a unique chromatin landscape from cutaneous melanoma. Internal melanocytes could be labeled using a MM-specific transcriptional enhancer. Normal zebrafish internal melanocytes shared a gene expression signature with MMs. Patient and zebrafish MMs have increased migratory neural crest gene and decreased antigen presentation gene expression, consistent with the increased metastatic behavior and decreased immunotherapy sensitivity of MM. Our work suggests the cell state of the originating melanocyte influences the behavior of derived melanomas. Our animal model phenotypically and transcriptionally mimics patient tumors, allowing this model to be used for MM therapeutic discovery.

11.
BMC Pediatr ; 24(1): 293, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689235

ABSTRACT

BACKGROUND: This study reported height prediction and longitudinal growth changes in Chinese pediatric patients with acute myeloid leukemia (AML) during and after treatment and their associations with outcomes. METHODS: Changes in 88 children with AML in percentages according to the growth percentile curve for Chinese boys/girls aged 2-18/0-2 years for body mass index (BMI), height, and weight from the time of diagnosis to 2 years off therapy were evaluated. The outcomes of AML were compared among patients with different BMI levels. RESULTS: The proportion of underweight children (weight < 5th percentile) increased significantly from the initial diagnosis to the end of consolidation treatment. The proportion of patients with low BMI (BMI < 5th percentile) was highest (23.08%) during the consolidation phase, and no children were underweight, but 20% were overweight (BMI > 75th percentile) after 2 years of drug withdrawal. Unhealthy BMI at the initial diagnosis and during intensive chemotherapy leads to poorer outcomes. For height, all patients were in the range of genetic height predicted based on their parents' height at final follow-up. CONCLUSIONS: Physicians should pay more attention to the changes in height and weight of children with AML at these crucial treatment stages and intervene in time.


Subject(s)
Body Height , Body Mass Index , Body Weight , Leukemia, Myeloid, Acute , Humans , Male , Female , Child , Child, Preschool , Adolescent , Longitudinal Studies , Thinness , China , Retrospective Studies
13.
Burns Trauma ; 12: tkad055, 2024.
Article in English | MEDLINE | ID: mdl-38601971

ABSTRACT

Background: Prevention of diabetic heart myocardial ischemia-reperfusion (IR) injury (MIRI) is challenging. Propofol attenuates MIRI through its reactive oxygen species scavenging property at high doses, while its use at high doses causes hemodynamic instability. Salvianolic acid A (SAA) is a potent antioxidant that confers protection against MIRI. Both propofol and SAA affect metabolic profiles through regulating Adenosine 5'-monophosphate-activated protein kinase (AMPK). The aim of this study was to investigate the protective effects and underlying mechanisms of low doses of propofol combined with SAA against diabetic MIRI. Methods: Diabetes was induced in mice by a high-fat diet followed by streptozotocin injection, and MIRI was induced by coronary artery occlusion and reperfusion. Mice were treated with propofol at 46 mg/kg/h without or with SAA at 10 mg/kg/h during IR. Cardiac origin H9c2 cells were exposed to high glucose (HG) and palmitic acid (PAL) for 24 h in the absence or presence of cluster of differentiation 36 (CD36) overexpression or AMPK gene knockdown, followed by hypoxia/reoxygenation (HR) for 6 and 12 h. Results: Diabetes-exacerbated MIRI is evidenced as significant increases in post-ischemic infarction with reductions in phosphorylated (p)-AMPK and increases in CD36 and ferroptosis. Propofol moderately yet significantly attenuated all the abovementioned changes, while propofol plus SAA conferred superior protection against MIRI to that of propofol. In vitro, exposure of H9c2 cells under HG and PAL decreased cell viability and increased oxidative stress that was concomitant with increased levels of ferroptosis and a significant increase in CD36, while p-AMPK was significantly reduced. Co-administration of low concentrations of propofol and SAA at 12.5 µM in H9c2 cells significantly reduced oxidative stress, ferroptosis and CD36 expression, while increasing p-AMPK compared to the effects of propofol at 25 µM. Moreover, either CD36 overexpression or AMPK silence significantly exacerbated HR-induced cellular injuries and ferroptosis, and canceled propofol- and SAA-mediated protection. Notably, p-AMPK expression was downregulated after CD36 overexpression, while AMPK knockdown did not affect CD36 expression. Conclusions: Combinational usage of propofol and SAA confers superior cellular protective effects to the use of high-dose propofol alone, and it does so through inhibiting HR-induced CD36 overexpression to upregulate p-AMPK.

14.
Org Biomol Chem ; 22(16): 3198-3203, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563151

ABSTRACT

Novel construction methods for obtaining 3,4'-pyran spirooxindole heterocyclic skeletons have always been the focus of attention. Herein, we report a highly enantioselective inverse-electron-demand oxa-Diels-Alder cycloaddition reaction of a ß,γ-unsaturated pyrazole amide and a N-diphenyl isatin-derived oxodiene using a bifunctional catalyst. In addition, large-scale experiments confirmed the reliability of the reaction. The resultant products of this study can be further transformed.

15.
Sci Rep ; 14(1): 9510, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664443

ABSTRACT

Clinical ulcerative colitis (UC) is a heterogeneous condition. Moreover, medical interventions are nonspecific, and thus, treatment responses are inconsistent. The aim of this study was to explore the molecular subtypes and biological characteristics of UC based on ferroptosis and neutrophil gene sets. Multiple intestinal mucosa gene expression profiles of UC patients in the Gene Expression Omnibus (GEO) database were downloaded. Unsupervised clustering methods were used to identify potential molecular subtypes based on ferroptosis and neutrophil gene sets. Multiple immune infiltration algorithms were used to evaluate the biological characteristics of the molecular subtypes. Machine learning identifies hub genes for molecular subtypes and analyses their diagnostic efficacy for UC and predictive performance for drug therapy. The relevant conclusions were verified by clinical samples and animal experiments. Four molecular subtypes were identified according to the ferroptosis and neutrophil gene sets: neutrophil, ferroptosis, mixed and quiescent. The subtypes have different biological characteristics and immune infiltration levels. Multiple machine learning methods jointly identified four hub genes (FTH1, AQP9, STEAP3 and STEAP4). Receiver operating characteristic (ROC) curve analysis revealed that the four hub genes could be used as diagnostic markers for UC. The clinical response profile data of infliximab treatment patients showed that AQP9 and STEPA4 were reliable predictors of infliximab treatment response. In human samples the AQP9 and STEAP4 protein were shown to be increased in UC intestinal samples. In animal experiments, the ferroptosis and neutrophil phenotype were confirmed. Dual analysis of ferroptosis and neutrophil gene expression revealed four subgroups of UC patients. The molecular subtype-associated hub genes can be used as diagnostic markers for UC and predict infliximab treatment response.


Subject(s)
Colitis, Ulcerative , Ferroptosis , Neutrophil Infiltration , Ferroptosis/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Humans , Animals , Neutrophil Infiltration/genetics , Neutrophils/metabolism , Neutrophils/immunology , Infliximab/therapeutic use , Infliximab/pharmacology , Machine Learning , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Gene Expression Profiling/methods , Male , Female
16.
J Affect Disord ; 356: 48-53, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38593939

ABSTRACT

BACKGROUND: Observational studies suggested that immune system disorder is associated with depression. However, the causal association has not been fully elucidated. Thus, we aim to assess the causality of the associations of immune cell profiles with risk of depression through Mendelian randomization analysis. METHODS: We extracted genetic variances of immune cell traits from a large publicly available genome-wide association study (GWAS) involving 3757 participants and depression from a GWAS containing 246,363 cases and 561,190 controls of European ancestry. Inverse variance weighting (IVW) was performed as the MR primary analysis. Simultaneously apply MR-Egger and weighted median as supplementary enhancements to the final result. We further performed heterogeneity and horizontal pleiotropy test to validate the main MR results. RESULTS: Five immunophenotypes were identified to be significantly associated with depression risk: CD27 on IgD-CD38dimB cell (OR = 1.019, 95 % CI = 1.010-1.028, P = 1.24 × 10-5), CD45RA-CD4+T cell Absolute Count (OR = 0.974, 95 % CI = 0.962-0.986, P = 3.88 × 10-5), CD40 on CD14-CD16+monocyte (OR = 0.987, 95 % CI = 0.981-0.993, P = 2.1 × 10-4), CD27 on switched memory B cell (OR = 1.015, 95 % CI = 1.006-1.023, P = 2.6 × 10-4), CD27 on IgD-CD38-B cell (OR = 1.017, 95 % CI = 1.008-1.027, P = 3.1 × 10-4). CONCLUSION: Our findings shed light on the intricate interaction pattern between the immune system and depression, offering a novel direction for researchers to investigate the underlying biological mechanisms of depression.


Subject(s)
Depression , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Depression/genetics , Depression/immunology , Immunophenotyping , Genetic Predisposition to Disease/genetics
17.
Cardiovasc Toxicol ; 24(5): 481-498, 2024 May.
Article in English | MEDLINE | ID: mdl-38647950

ABSTRACT

The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.


Subject(s)
Acetylcysteine , Antioxidants , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Ferroptosis , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Animals , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Acetylcysteine/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Male , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Antioxidants/pharmacology , Ferroptosis/drug effects , Myocardial Infarction/prevention & control , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Infarction/drug therapy , Time Factors , Myocardium/pathology , Myocardium/metabolism , Mice , Oxidative Stress/drug effects
18.
BMC Plant Biol ; 24(1): 344, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684949

ABSTRACT

BACKGROUND: Geographical factors affect the nutritional, therapeutic and commercial values of fruits. Dragon fruit (Hylocereus spp) is a popular fruit in Asia and a potential functional food with diverse pharmacological attributes. Although it is produced in various localities, the information related to the altitudinal variation of dragon fruit nutrients and active compounds is scarce. Hence, this study aimed to investigate the variations in metabolite profiles of H. polyrhizus (variety Jindu1) fruit pulps from three different altitudes of China, including Wangmo (WM, 650 m), Luodian (LD, 420 m), and Zhenning (ZN, 356 m). Jindu1 is the main cultivated pitaya variety in Guizhou province, China. RESULTS: The LC-MS (liquid chromatography-mass spectroscopy)-based widely targeted metabolic profiling identified 645 metabolites, of which flavonoids (22.64%), lipids (13.80%), phenolic acids (12.40%), amino acids and derivatives (10.39%), alkaloids (8.84%), and organic acids (8.37%) were dominant. Multivariate analyses unveiled that the metabolite profiles of the fruit differed regarding the altitude. Fruits from WM (highest altitude) were prime in quality, with higher levels of flavonoids, alkaloids, nucleotides and derivatives, amino acids and derivatives, and vitamins. Fruits from LD and ZN had the highest relative content of phenolic acids and terpenoids, respectively. We identified 69 significantly differentially accumulated metabolites across the pulps of the fruits from the three locations. KEGG analysis revealed that flavone and flavonol biosynthesis and isoflavonoid biosynthesis were the most differentially regulated. It was noteworthy that most active flavonoid compounds exhibited an increasing accumulation pattern along with the increase in altitude. Vitexin and isovitexin were the major differentially accumulated flavonoids. Furthermore, we identified two potential metabolic biomarkers (vitexin and kaempferol 3-O-[2-O-ß-D-galactose-6-O-a-L-rhamnose]-ß-D-glucoside) to discriminate between dragon fruits from different geographical origins. CONCLUSION: Our findings provide insights into metabolic changes in dragon fruits grown at different altitudes. Furthermore, they show that growing pitaya at high altitudes can produce fruit with higher levels of bioactive compounds, particularly flavonoids.


Subject(s)
Altitude , Cactaceae , Fruit , Metabolomics , Tandem Mass Spectrometry , Fruit/metabolism , Fruit/chemistry , Metabolomics/methods , Tandem Mass Spectrometry/methods , Cactaceae/metabolism , Cactaceae/chemistry , Flavonoids/metabolism , China , Chromatography, High Pressure Liquid , Metabolome , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
19.
Adv Healthc Mater ; 13(17): e2303814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38497832

ABSTRACT

In this study, the regulatory role and mechanisms of tantalum (Ta) particles in the bone tissue microenvironment are explored. Ta particle deposition occurs in both clinical samples and animal tissues following porous Ta implantation. Unlike titanium (Ti) particles promoting M1 macrophage (Mϕ) polarization, Ta particles regulating calcium signaling pathways and promoting M2 Mϕ polarization. Ta-induced M2 Mϕ enhances bone marrow-derived mesenchymal stem cells (BMSCs) proliferation, migration, and osteogenic differentiation through exosomes (Exo) by upregulating miR-378a-3p/miR-221-5p and downregulating miR-155-5p/miR-212-5p. Ta particles suppress the pro-inflammatory and bone resorption effects of Ti particles in vivo and in vitro. In a rat femoral condyle bone defect model, artificial bone loaded with Ta particles promotes endogenous Mϕ polarization toward M2 differentiation at the defect site, accelerating bone repair. In conclusion, Ta particles modulate Mϕ polarization toward M2 and influence BMSCs osteogenic capacity through Exo secreted by M2 Mϕ, providing insights for potential bone repair applications.


Subject(s)
Cell Differentiation , Exosomes , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Tantalum , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Exosomes/metabolism , Tantalum/chemistry , Tantalum/pharmacology , Osteogenesis/drug effects , Macrophages/metabolism , Macrophages/drug effects , Macrophages/cytology , Rats , Cell Differentiation/drug effects , MicroRNAs/metabolism , Rats, Sprague-Dawley , Humans , Male , Cell Proliferation/drug effects , Bone and Bones/metabolism
20.
Mol Pharm ; 21(4): 2012-2024, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38497779

ABSTRACT

The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.


Subject(s)
Liposomes , Nanoparticles , Photochemotherapy , Porphyrins , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Nanoparticles/chemistry , DNA , Porphyrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...