Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38733316

ABSTRACT

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Subject(s)
Apoptosis , Inflammation Mediators , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , RNA, Long Noncoding , RNA, Long Noncoding/blood , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Male , Middle Aged , Female , Inflammation Mediators/metabolism , Inflammation Mediators/blood , Cell Line , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/diagnosis , Myocardial Reperfusion Injury/genetics , Rats , Cytokines/metabolism , Cytokines/blood , Signal Transduction , Case-Control Studies , Aged , Up-Regulation
2.
BMC Cardiovasc Disord ; 23(1): 521, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891465

ABSTRACT

BACKGROUND: In light of the abnormal expression of microRNA (miR-483-5p) in patients with atherosclerosis (AS), its role in vascular endothelial cell injury was explored. And the mechanisms related to autophagy were also elucidated. METHODS: Human umbilical vein endothelial cells (HUVECs) were given 100 mg/L ox-LDL to induce endothelial injury. Cell transfection was done to regulate miR-483-5p levels. Cell viability and apoptosis were detected. qRT-PCR was employed for the mRNA levels' detection. RESULTS: Autophagic flux impairment of HUVECs was detected after ox-LDL treatment, along with the upregulation of miR-483-5p. Ox-LDL inhibited cell viability and promoted cell apoptosis, but these influences were changed by miR-483-5p downregulation. MiR-483-5p downregulation decreased the mRNA levels of IL-1ß, IL-6, ICAM-1 and VCAM-1. 3-MA, the autophagy inhibitor, reversed the beneficial role of miR-483-5p downregulation in ox-LDL-induced HUVECs' injury. TIMP2 acts as a target gene of miR-483-5p, and was downregulated in HUVEC models. CONCLUSION: MiR-483-5p downregulation alleviated ox-LDL-induced endothelial injury via activating autophagy, this might be related to TIMP2.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Down-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipoproteins, LDL/toxicity , RNA, Messenger/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Apoptosis
3.
BMC Cardiovasc Disord ; 23(1): 122, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890438

ABSTRACT

BACKGROUND: To investigate the expression of miR-218-5p in atherosclerosis patients and its effect on ox-LDL induced THP-1-derived macrophage inflammatory response. METHODS: RT-qPCR detected the expression of serum miR-218-5p, and the diagnostic value of miR-218-5p was analyzed by ROC curve. Pearson correlation coefficient was used to evaluate the correlation between miR-218-5p and CIMT and CRP. THP-1 cells were treated with ox-LDL to construct foam cell model. The expression of miR-218-5p was regulated by in vitro transfection technique, and the effects of miR-218-5p on cell viability, apoptosis and inflammation were investigated. Luciferase reporter genes were used to analyze target genes of miR-218-5p in cell models. RESULTS: The expression of miR-218-5p in the atherosclerosis cohort was significantly reduced, and miR-218-5p showed a good ability to distinguish patients from healthy people. Correlation analysis showed that the level of miR-218-5p was negatively correlated with the levels of CIMT and CRP. Cytological studies showed that the expression of miR-218-5p in macrophages decreased after ox-LDL induction. ox-LDL treatment on macrophages resulted in decreased cell viability, increased cell apoptosis and production of inflammatory cytokines, which contributed to the exacerbation of plaque formation. However, the above situation was reversed after upregulation of miR-218-5p. Bioinformatics analysis showed that TLR4 may be the target gene of miR-218-5p, and this hypothesis was proved by luciferase reporter gene assay. CONCLUSIONS: The expression of miR-218-5p is reduced in atherosclerosis, and it may regulate the inflammatory response of atherosclerotic foam cells by targeting TLR4, suggesting that miR-218-5p may be a promising target for clinical atherosclerosis therapy.


Subject(s)
Atherosclerosis , MicroRNAs , Toll-Like Receptor 4 , Humans , Apoptosis , Atherosclerosis/metabolism , Atherosclerosis/pathology , Inflammation/genetics , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
4.
Exp Ther Med ; 23(3): 205, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35126708

ABSTRACT

Doxorubicin (DOX) has powerful anticancer properties, but its clinical application is affected by its serious cardiotoxicity. Wogonin (WG) has been shown to have marked cardiovascular protection potential. However, it is not known whether this potential can protect the heart from DOX damage. The aim of the present study was to investigate whether WG could ameliorate the cardiotoxicity of DOX. DOX and WG were used to establish a model of cardiac damage. Echocardiography, brain natriuretic peptide, creatine kinase MB and cardiac troponin T were used to detect the degree of cardiac damage. The levels of superoxide dismutase, malondialdehyde, glutathione and catalase in serum were measured to observed oxidative stress state. The mRNA levels of cyclophilin D, voltage-dependent anion-selective channel 1 and adenine nucleotide transporter 1 were detected by reverse transcription-quantitative PCR. Western blotting was used to detect the expression of cytochrome c in mitochondria and cytoplasm and cleaved-caspase-9 and pro/cleaved-caspase-3 in cytoplasm in cardiac tissue and primary cardiomyocytes to verify the related signaling pathways. DOX rats showed a series of cardiac damage. However, these damages were alleviated following WG treatment. Further studies showed that WG antagonized DOX cardiotoxicity through inhibiting the release of cytochrome c. WG protected rat heart from DOX damage. The mechanism may be closely related to inhibiting the release of cytochrome c from mitochondria and reducing cardiomyocyte apoptosis caused by caspase activation.

5.
J Thromb Thrombolysis ; 52(3): 720-729, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34184201

ABSTRACT

Cardiovascular diseases rank the top cause of morbidity and mortality worldwide and are usually associated with blood reperfusion after myocardial ischemia/reperfusion injury (MIRI), which often causes severe pathological damages and cardiomyocyte apoptosis. LSINCT5 expression in the plasma of MI patients (n = 53), healthy controls (n = 42) and hypoxia-reoxygenation (HR)-treated cardiomyocyte AC16 cells was examined using qRT-PCR. The effects of LSINCT5 on cell viability and apoptosis were detected by MTT and flow cytometry, respectively. The expression of apoptosis-related proteins Bcl2, Bax and caspase 3 were tested by Western blot. The interaction between LSINCT5 and miR-222 was predicted by bioinformatic analysis. Moreover, changes in viability and apoptosis of AC16 cells co-transfected with siLSINCT5 and miR-222 inhibitor after HR treatment were examined. At last, the expression of proteins in PI3K/AKT pathway, namely PTEN, PI3K and AKT, was examined to analyze the possible pathway participating in LSINCT5-mediated MI/RI. Our study showed that LSINCT5 expression was upregulated in the plasma of MI patients and HR-treated AC16 cells. LSINCT5 overexpression significantly decreased cell viability and apoptosis. Luciferase reporter gene assay and RNA pulldown assay showed that LSINCT5 was a molecular sponge of miR-222. MiR-222 silencing in AC16 cells simulated the phenotypes of MIRI patients and HR-treated cells, indicating that LSINCT5 functions via miR-222 to regulate proliferation and apoptosis of HR-treated AC16 cells. We also showed that proteins of PI3K/AKT signaling pathway were affected in HR-treated AC16 cells, and LSINTC5 knockdown rescued these effects. LncRNA LSINCT5 was upregulated during MI pathogenesis, and LSINCT5 regulated MIRI possibly via a potential LSINCT5/miR-222 axis and PI3K/AKT signaling pathway. Our findings may provide novel evidence for MIRI prevention.


Subject(s)
MicroRNAs/genetics , Myocardial Reperfusion Injury , RNA, Long Noncoding/genetics , Apoptosis , Humans , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism
6.
J Physiol Biochem ; 77(4): 577-587, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34146302

ABSTRACT

To investigate whether miR-124-3p influences cell apoptosis, inflammatory response, and oxidative stress in rats with acute myocardial infarction (AMI) by mediating the SIRT1/FGF21/CREB/PGC1α pathway. A dual-luciferase reporter gene assay was performed to verify the relationship between miR-124-3p and SIRT1. AMI rats were established via coronary artery ligation after injection with agomiR-124-3p, antagomiR-124-3p, and/or SIRT1 siRNA, and triphenyltetrazolium chloride (TTC), HE, and TUNEL stainings were performed. Bio-Plex rat cytokine assays were performed to determine proinflammatory factor levels. qRT-PCR and Western blotting were used to examine the mRNA and protein expression, respectively. The activity levels of antioxidant enzymes in myocardial tissues were also measured. miR-124-3p was confirmed to target SIRT1 in the H9C2 cells. AMI rats exhibited increased miR-124-3p expression and decreased SIRT1 expression in myocardial tissues. HE staining showed a disorganized cell arrangement and inflammatory cell infiltration in the myocardial tissues of the AMI rats, which was more severe in the rats injected with SIRT1 and agomiR-124-3p but was ameliorated in those treated with antagomiR-124-3p. Moreover, the AMI rats in the antagomiR-124-3p group presented with a reduction in infarct area with an increase in antioxidant enzyme activity, Bcl-2 expression, and activation of the FGF21/CREB/PGC1α pathway, as well as a decrease in cell apoptosis rate, Bax and Caspase-3 expression, and levels of proinflammatory factors, effects that were reversed by si-SIRT1. Inhibiting miR-124-3p expression may activate the FGF21/CREB/PGC1α pathway to reduce cell apoptosis, alleviate the inflammatory response, and attenuate oxidative stress in AMI rats by targeting SIRT1. Graphical abstract.


Subject(s)
MicroRNAs , Myocardial Infarction , Animals , Apoptosis , Fibroblast Growth Factors , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Pyroptosis , Rats , Rats, Sprague-Dawley , Sirtuin 1/genetics , Sirtuin 1/metabolism
7.
J Biomater Appl ; 36(1): 15-25, 2021 07.
Article in English | MEDLINE | ID: mdl-33287646

ABSTRACT

The proposed study was to develop the preparation of ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) modified with citric acid, with surface conjugated with lactoferrin (Lf), which used as a potential targeted contrast agent for magnetic resonance imaging (MRI) of brain glioma. USPIONs were prepared by the thermal decomposition method. The hydrophobic USPIONs were coated with citric acid by the ligand exchange method. Then, Lf was conjugated into the surface of USPIONs. The obtained Lf-USPIONs were analyzed by fourier transform infrared (FTIR) spectroscopy and polyacrylamide gel electrophoresis. The size, size distribution, shape and superparamagnetic property of Lf-USPIONs were investigated with TEM and vibrating sample magnetometer (VSM). Both FTIR and electrophoresis analysis demonstrated the successful conjugation of Lf to the surface of USPIONs. The average size of Lf-USPIONs was about 8.4 ± 0.5 nm, which was determined using the statistics of measured over 100 nanoparticles in the TEM image, with a negative charge of -7.3 ± 0.2 mV. TEM imaging revealed that Lf-USPIONs were good in dispersion and polygonal in morphology. VSM results indicated that Lf-USPIONs were superparamagnetic and the saturated magnetic intensity was about 69.8 emu/g. The Lf-USPIONs also showed good biocompatibility in hemolysis, cytotoxicity, cell migration and blood biochemistry studies. MR imaging results in vitro and in vivo indicated that Lf-USPIONs exhibited good negative contrast enhancement. Taken together, Lf-USPIONs hold great potential for brain gliomas MR imaging as a nanosized targeted contrast agent.


Subject(s)
Citric Acid/chemistry , Dextrans/chemistry , Glioma/drug therapy , Lactoferrin/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Animals , Cell Movement , Contrast Media/chemistry , Glioma/diagnostic imaging , Hemolysis , Humans , Magnetic Resonance Imaging/methods , Male , Rabbits , Rats
8.
Exp Ther Med ; 20(4): 3709-3719, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32855722

ABSTRACT

Oxidative stress and apoptosis serve an important role in the development of pressure overload-induced cardiac remodelling. Carnosic acid (CA) has been found to exert antioxidant and anti-apoptotic effects. The present study investigated the underlying mechanism of CA protection and whether this effect was exerted against pressure overload-induced cardiac remodelling. Aortic banding (AB) surgery was performed to induce cardiac remodelling. Mice were randomly divided into four groups (n=15/group): i) Sham + vehicle; ii) sham + CA; iii) AB + vehicle; and iv) AB + CA. After 2 days of AB, 50 mg kg CA was administered orally for 12 days. Echocardiography, histological analysis and molecular biochemistry techniques were performed to evaluate the roles of CA. CA treatment decreased cardiac hypertrophy, fibrosis, oxidative stress and apoptosis in mice challenged with pressure overload. CA also decreased the cross-sectional area of cardiomyocytes and the mRNA and protein expression levels of hypertrophic markers. Furthermore, CA treatment decreased collagen deposition, α-smooth muscle actin expression and the mRNA and protein expression of various fibrotic markers. Additionally, CA reversed the AB-mediated increase in NAPDH oxidase (NOX) 2, NOX4 and 4-hydroxynonenal levels. The number of apoptotic cells was decreased following CA treatment following under conditions of pressure overload. CA also suppressed the activation of AKT and glycogen synthase kinase 3 ß (GSK3ß) in mice challenged with AB. The present results suggested that CA could inhibit pressure overload-induced cardiac hypertrophy and fibrosis by suppressing the AKT/GSK3ß/NOX4 signalling pathway. Therefore, CA may be a promising therapy for cardiac remodelling.

9.
J Integr Neurosci ; 18(4): 401-408, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31912698

ABSTRACT

Vascular dementia is the second most common type of dementia, yet no effective treatment for it exists. Akt and Erk1/2 signaling pathways are involved in neuronal survival. It has been reported that bisperoxovanadium (pyridin-2-squaramide), a novel squaramide compound, protects against cerebral ischemia injury via activation of Akt and Erk1/2. Here, the potential neuroprotective effect of bisperoxovanadium is shown for the first time in a model of vascular dementia induced in 6-month-old male Sprague-Dawley rats by two-vessel occlusion injury applied to 6-month-old. Following this lesion, bisperoxovanadium (pyridin-2-squaramide) (1 mg/kg/day) was intragastrically administered for four successive weeks. The Morris water maze test estimated cognitive function. The morphological examination was performed by hematoxylin-eosin staining. Akt and Erk1/2 protein abundance were assessed by Western blot. Results showed that bisperoxovanadium (pyridin-2-squaramide) attenuated not only cognitive dysfunction but also alleviated histopathological changes in rats with vascular dementia. Moreover, bisperoxovanadium (pyridin-2-squaramide) ultimately reduced neuronal apoptosis represented by the Bax/Bcl-2 ratio in the CA1 (cornu ammonis 1) region of the hippocampus. Importantly, the levels of p-Akt(ser473) and p-Erk1/2(Thr202/Tyr204>) were increased after treatment with bisperoxovanadium (pyridin-2-squaramide). It is concluded that the novel squaramide compound bisperoxovanadium (pyridin-2-squaramide) might be effective in the treatment of vascular dementia by activation of Akt and Erk1/2.


Subject(s)
Apoptosis/drug effects , CA1 Region, Hippocampal/drug effects , Cognitive Dysfunction/drug therapy , Dementia, Vascular/drug therapy , MAP Kinase Signaling System/drug effects , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/drug effects , Signal Transduction/drug effects , Vanadium Compounds/pharmacology , Animals , Behavior, Animal/drug effects , Cognitive Dysfunction/etiology , Dementia, Vascular/complications , Disease Models, Animal , Male , Maze Learning/drug effects , Neuroprotective Agents/administration & dosage , Rats , Rats, Sprague-Dawley , Vanadium Compounds/administration & dosage
10.
PLoS One ; 13(3): e0194563, 2018.
Article in English | MEDLINE | ID: mdl-29590166

ABSTRACT

Conflicting results identifying the association between tooth loss and cardiovascular disease and stroke have been reported. Therefore, a dose-response meta-analysis was performed to clarify and quantitatively assess the correlation between tooth loss and cardiovascular disease and stroke risk. Up to March 2017, seventeen cohort studies were included in current meta-analysis, involving a total of 879084 participants with 43750 incident cases. Our results showed statistically significant increment association between tooth loss and cardiovascular disease and stroke risk. Subgroups analysis indicated that tooth loss was associated with a significant risk of cardiovascular disease and stroke in Asia and Caucasian. Furthermore, tooth loss was associated with a significant risk of cardiovascular disease and stroke in fatal cases and nonfatal cases. Additionally, a significant dose-response relationship was observed between tooth loss and cardiovascular disease and stroke risk. Increasing per 2 of tooth loss was associated with a 3% increment of coronary heart disease risk; increasing per 2 of tooth loss was associated with a 3% increment of stroke risk. Subgroup meta-analyses in study design, study quality, number of participants and number of cases showed consistent findings. No publication bias was observed in this meta-analysis. Considering these promising results, tooth loss might provide harmful health benefits.


Subject(s)
Cardiovascular Diseases/epidemiology , Stroke/epidemiology , Tooth Loss/epidemiology , Asian People , Cardiovascular Diseases/etiology , Humans , Risk Assessment , Risk Factors , Statistics as Topic , Stroke/etiology , Tooth Loss/complications , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...