Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38841747

ABSTRACT

Chronic kidney disease is the loss of renal function that can occur from aging or through a myriad of other disease states. Rising serum concentrations of kynurenine, a tryptophan metabolite, have been shown to correlate with increasing severity of chronic kidney disease. This study used chronic intravenous infusion in conscious male Sprague Dawley rats to test the hypothesis that kynurenine can induce renal damage and promote alterations in blood pressure, heart rate and decreased renal function. We found that kynurenine infusion increased mean arterial pressure, increased the maximum and minimum range of heart rate, decreased glomerular filtration rate and induced kidney damage in a dose-dependent manner. This study shows that kynurenine infusion can promote kidney disease in healthy, young rats, implying that the increase in kynurenine levels associated with chronic kidney disease may establish a feed-forward mechanism that exacerbates loss of renal function.

2.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669339

ABSTRACT

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Subject(s)
Aging , Catalytic Domain , Cataract , Glutamate-Cysteine Ligase , Glutathione , Lens, Crystalline , Cataract/pathology , Cataract/genetics , Cataract/metabolism , Animals , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Mice , Glutathione/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Aging/metabolism , Humans , Disease Models, Animal , Mutation , Gene Knock-In Techniques
3.
Autophagy ; : 1-22, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37978868

ABSTRACT

Macroautophagy/autophagy contributes to maladaptive kidney repair by inducing pro-fibrotic factors such as FGF2 (fibroblast growth factor 2), but the underlying mechanism remains elusive. Here, we show that EGR1 (early growth response 1) was induced in injured proximal tubules after ischemic acute kidney injury (AKI) and this induction was suppressed by autophagy deficiency in inducible, renal tubule-specific atg7 (autophagy related 7) knockout (iRT-atg7 KO) mice. In cultured proximal tubular cells, TGFB1 (transforming growth factor beta 1) induced EGR1 and this induction was also autophagy dependent. Egr1 knockdown in tubular cells reduced FGF2 expression during TGFB1 treatment, leading to less FGF2 secretion and decreased paracrine effects on fibroblasts. ChIP assay detected an increased binding of EGR1 to the Fgf2 gene promoter in TGFB1-treated tubular cells. Both Fgf2 and Egr1 transcription was inhibited by FGF2 neutralizing antibody, suggesting a positive feedback for EGR1-mediated FGF2 autoregulation. This feedback was confirmed using fgf2-deficient tubular cells and fgf2-deficient mice. Upstream of EGR1, autophagy deficiency in mice suppressed MAPK/ERK (mitogen-activated protein kinase) activation in post-ischemic renal tubules. This inhibition correlated with SQSTM1/p62 (sequestosome 1) aggregation and its sequestration of MAPK/ERK. SQSTM1/p62 interacted with MAPK/ERK and blocked its activation during TGFB1 treatment in autophagy-deficient tubular cells. Inhibition of MAPK/ERK suppressed EGR1 and FGF2 expression in maladaptive tubules, leading to the amelioration of renal fibrosis and improvement of renal function. These results suggest that autophagy activates MAPK/ERK in renal tubular cells, which induces EGR1 to transactivate FGF2. FGF2 is then secreted into the interstitium to stimulate fibroblasts for fibrogenesis.Abbreviation: 3-MA: 3-methyladenine; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB/ß-actin: actin, beta; AKI: acute kidney injury; aa: amino acid; ATG/Atg: autophagy related; BUN: blood urea nitrogen; ChIP: chromatin immunoprecipitation; CKD: chronic kidney disease; CM: conditioned medium; COL1A1: collagen, type I, alpha 1; COL4A1: collagen, type IV, alpha 1; CQ: chloroquine; DBA: dolichos biflorus agglutinin; EGR1: early growth response 1; ELK1: ELK1, member of ETS oncogene family; FGF2: fibroblast growth factor 2; FN1: fibronectin 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAVCR1/KIM-1: hepatitis A virus cellular receptor 1; IP: immunoprecipitation; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2K/MEK: mitogen-activated protein kinase kinase; MAPK: mitogen-activated protein kinase; NFKB: nuclear factor kappa B; PB1: Phox and Bem1; PFT: pifithrin α; PPIB/cyclophilin B: peptidylprolyl isomerase B; RT-qPCR: real time-quantitative PCR; SQSTM1/p62: sequestosome 1; TGFB1/TGF-ß1: transforming growth factor beta 1; VIM: vimentin.

4.
Exp Eye Res ; 226: 109306, 2023 01.
Article in English | MEDLINE | ID: mdl-36372215

ABSTRACT

Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.


Subject(s)
Gene Targeting , Tamoxifen , Mice , Animals , Mice, Transgenic , Tamoxifen/pharmacology , Recombinases
5.
Neuropeptides ; 94: 102258, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35660758

ABSTRACT

Diabetic retinopathy (DR) is a neurodegenerative disease that results as a complication of dysregulated glucose metabolism, or diabetes. The signaling of insulin is lost or dampened in diabetes, but this hormone has also been shown to be an important neurotrophic factor which supports neurons of the brain. The role of local insulin synthesis and secretion in the retina, however, is unclear. We have investigated whether changes in local insulin synthesis occur in the diabetic retina and in response to stressors known to initiate retinal neurodegenerative processes. The expression of insulin and its cleavage product, c-peptide, were examined in retinas of a Type I diabetes animal model and human postmortem donors with DR. We detected mRNAs for insulin I (Ins1), insulin II (Ins2) and human insulin (Ins) by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Using an ex-vivo system, isolated neuroretinas and retinal pigmented epithelium (RPE) layers were exposed to glycemic, oxidative and inflammatory environments to measure insulin gene transcripts produced de novo in the retina under disease-relevant conditions. The expression of insulin in the retina was altered with the progression of diabetes in STZ mice and donors with DR. Transcription factors for insulin, were simultaneously expressed in a pattern matching insulin genes. Furthermore, de novo insulin mRNA in isolated retinas was induced by acute stress. RPE explants displayed the most pronounced changes in Ins1 and Ins2. This data reveals that the retina, like the brain, is an organ capable of producing local insulin and this synthesis is altered in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Neurodegenerative Diseases , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Insulin/pharmacology , Mice , RNA, Messenger/metabolism , Retina/metabolism
6.
Kidney Int ; 102(1): 121-135, 2022 07.
Article in English | MEDLINE | ID: mdl-35483522

ABSTRACT

Ribosomal protein S6 (rpS6) phosphorylation mediates the hypertrophic growth of kidney proximal tubule cells. However, the role of rpS6 phosphorylation in podocyte hypertrophy and podocyte loss during the pathogenesis of focal segmental glomerulosclerosis (FSGS) remains undefined. Here, we examined rpS6 phosphorylation levels in kidney biopsy specimens from patients with FSGS and in podocytes from mouse kidneys with Adriamycin-induced FSGS. Using genetic and pharmacologic approaches in the mouse model of FSGS, we investigated the role of rpS6 phosphorylation in podocyte hypertrophy and loss during development and progression of FSGS. Phosphorylated rpS6 was found to be markedly increased in the podocytes of patients with FSGS and Adriamycin-induced FSGS mice. Genetic deletion of the Tuberous sclerosis 1 gene in kidney glomerular podocytes activated mammalian target of rapamycin complex 1 signaling to rpS6 phosphorylation, resulting in podocyte hypertrophy and pathologic features similar to those of patients with FSGS including podocyte loss, leading to segmental glomerulosclerosis. Since protein phosphatase 1 is known to negatively regulate rpS6 phosphorylation, treatment with an inhibitor increased phospho-rpS6 levels, promoted podocyte hypertrophy and exacerbated formation of FSGS lesions. Importantly, blocking rpS6 phosphorylation (either by generating congenic rpS6 knock-in mice expressing non-phosphorylatable rpS6 or by inhibiting ribosomal protein S6 kinase 1-mediated rpS6 phosphorylation with an inhibitor) significantly blunted podocyte hypertrophy, inhibited podocyte loss, and attenuated formation of FSGS lesions. Thus, our study provides genetic and pharmacologic evidence indicating that specifically targeting rpS6 phosphorylation can attenuate the development of FSGS lesions by inhibiting podocyte hypertrophy and associated podocyte depletion.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Animals , Doxorubicin , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Hypertrophy , Mammals/metabolism , Mice , Phosphorylation , Podocytes/pathology , Protein Serine-Threonine Kinases , Ribosomal Protein S6/metabolism
7.
J Am Soc Nephrol ; 33(4): 769-785, 2022 04.
Article in English | MEDLINE | ID: mdl-35115326

ABSTRACT

BACKGROUND: Vascular congestion of the renal medulla-trapped red blood cells in the medullary microvasculature-is a hallmark finding at autopsy in patients with ischemic acute tubular necrosis. Despite this, the pathogenesis of vascular congestion is not well defined. METHODS: In this study, to investigate the pathogenesis of vascular congestion and its role in promoting renal injury, we assessed renal vascular congestion and tubular injury after ischemia reperfusion in rats pretreated with low-dose LPS or saline (control). We used laser Doppler flowmetry to determine whether pretreatment with low-dose LPS prevented vascular congestion by altering renal hemodynamics during reperfusion. RESULTS: We found that vascular congestion originated during the ischemic period in the renal venous circulation. In control animals, the return of blood flow was followed by the development of congestion in the capillary plexus of the outer medulla and severe tubular injury early in reperfusion. Laser Doppler flowmetry indicated that blood flow returned rapidly to the medulla, several minutes before recovery of full cortical perfusion. In contrast, LPS pretreatment prevented both the formation of medullary congestion and its associated tubular injury. Laser Doppler flowmetry in LPS-pretreated rats suggested that limiting early reperfusion of the medulla facilitated this protective effect, because it allowed cortical perfusion to recover and clear congestion from the large cortical veins, which also drain the medulla. CONCLUSIONS: Blockage of the renal venous vessels and a mismatch in the timing of cortical and medullary reperfusion results in congestion of the outer medulla's capillary plexus and promotes early tubular injury after renal ischemia. These findings indicate that hemodynamics during reperfusion contribute to the renal medulla's susceptibility to ischemic injury.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Animals , Humans , Ischemia/complications , Kidney/pathology , Kidney Medulla/blood supply , Lipopolysaccharides , Rats , Renal Circulation/physiology , Reperfusion/adverse effects , Reperfusion Injury/complications , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
8.
Invest Ophthalmol Vis Sci ; 62(15): 29, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34967856

ABSTRACT

Purpose: Ultraviolet B (UVB) has been well documented to induce capsular cataracts; however, the mechanism of the lens epithelial cell-mediated repair process after UVB irradiation is not fully understood. The purpose of this study was to better understand lens epithelial cell repair after UVB-induced epithelium damage. Method: C57BL/6J mice were irradiated by various doses of UVB. Lens morphology and lens capsule opacity were monitored by slit lamp, darkfield microscopy, and phase-contrast microscopy. Lens epithelial cell mitotic activation and cell apoptosis were measured by immunohistochemistry. Lens epithelial ultrastructure was analyzed by transmission electron microscopy. Results: UVB irradiation above a dose of 2.87 kJ/m2 triggered lens epithelial cell apoptosis and subcapsular cataract formation, with a ring-shaped structure composed of multilayered epithelial cell clusters manifesting a dense ring-shaped capsular cataract. The epithelial cells immediately outside the edge of the ring-shaped aggregates transitioned to mitotically active cells and performed wound healing through the epithelialization process. However, repairs ceased when lens epithelial cells made direct contact, and scar-like tissue in the center of the anterior capsule remained even by 6 months after UVB irradiation. Conclusions: Our present study demonstrates that normally quiescent lens epithelial cells can be reactivated for epithelialization repair in response to UV-induced damage.


Subject(s)
Cataract/etiology , Epithelial Cells/physiology , Lens, Crystalline/radiation effects , Mitosis/physiology , Radiation Injuries, Experimental/etiology , Re-Epithelialization/physiology , Wound Healing/physiology , Animals , Apoptosis/radiation effects , Cataract/pathology , Cell Differentiation , Cell Line , Cell Movement , Disease Models, Animal , Epithelial Cells/pathology , Immunohistochemistry , Lens, Crystalline/pathology , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Phase-Contrast , Radiation Injuries, Experimental/pathology , Slit Lamp Microscopy , Ultraviolet Rays/adverse effects
9.
Cell Death Discov ; 6: 52, 2020.
Article in English | MEDLINE | ID: mdl-32566257

ABSTRACT

Tuberous sclerosis complex (TSC) is characterized by hamartomatous lesions in multiple organs, with most patients developing polycystic kidney disease and leading to a decline of renal function. TSC is caused by loss-of-function mutations in either Tsc1 or Tsc2 gene, but currently, there is no effective treatment for aberrant kidney growth in TSC patients. By generating a renal proximal tubule-specific Tsc1 gene-knockout (Tsc1 ptKO) mouse model, we observed that Tsc1 ptKO mice developed aberrantly enlarged kidneys primarily due to hypertrophy and proliferation of proximal tubule cells, along with some cystogenesis, interstitial inflammation, and fibrosis. Mechanistic studies revealed inhibition of AMP-activated protein kinase (AMPK) phosphorylation at Thr-172 and activation of Akt phosphorylation at Ser-473 and Thr-308. We therefore treated Tsc1 ptKO mice with the AMPK activator, metformin, by daily intraperitoneal injection. Our results indicated that metformin increased the AMPK phosphorylation, but decreased the Akt phosphorylation. These signaling modulations resulted in inhibition of proliferation and induction of apoptosis in the renal proximal tubule cells of Tsc1 ptKO mice. Importantly, metformin treatment effectively prevented aberrant kidney enlargement and cyst growth, inhibited inflammatory response, attenuated interstitial fibrosis, and protected renal function. The effects of metformin were further confirmed by in vitro experiments. In conclusion, this study indicates a potential therapeutic effect of metformin on Tsc1 deletion-induced kidney pathology, although currently metformin is primarily prescribed to treat patients with type 2 diabetes.

10.
J Cell Physiol ; 235(12): 9958-9973, 2020 12.
Article in English | MEDLINE | ID: mdl-32474911

ABSTRACT

Nephron loss stimulates residual functioning nephrons to undergo compensatory growth. Excessive nephron growth may be a maladaptive response that sets the stage for progressive nephron damage, leading to kidney failure. To date, however, the mechanism of nephron growth remains incompletely understood. Our previous study revealed that class III phosphatidylinositol-3-kinase (Pik3c3) is activated in the remaining kidney after unilateral nephrectomy (UNX)-induced nephron loss, but previous studies failed to generate a Pik3c3 gene knockout animal model. Global Pik3c3 deletion results in embryonic lethality. Given that renal proximal tubule cells make up the bulk of the kidney and undergo the most prominent hypertrophic growth after UNX, in this study we used Cre-loxP-based approaches to demonstrate for the first time that tamoxifen-inducible SLC34a1 promoter-driven CreERT2 recombinase-mediated downregulation of Pik3c3 expression in renal proximal tubule cells alone is sufficient to inhibit UNX- or amino acid-induced hypertrophic nephron growth. Furthermore, our mechanistic studies unveiled that the SLC34a1-CreERT2 recombinase-mediated Pik3c3 downregulation inhibited UNX- or amino acid-stimulated lysosomal localization and signaling activation of mechanistic target of rapamycin complex 1 (mTORC1) in the renal proximal tubules. Moreover, our additional cell culture experiments using RNAi confirmed that knocking down Pik3c3 expression inhibited amino acid-stimulated mTORC1 signaling and blunted cellular growth in primary cultures of renal proximal tubule cells. Together, both our in vivo and in vitro experimental results indicate that Pik3c3 is a major mechanistic mediator responsible for sensing amino acid availability and initiating hypertrophic growth of renal proximal tubule cells by activation of the mTORC1-S6K1-rpS6 signaling pathway.


Subject(s)
Class III Phosphatidylinositol 3-Kinases/genetics , Kidney Tubules, Proximal/growth & development , Kidney/drug effects , Nephrons/growth & development , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Animals , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Extracellular Matrix Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Integrases/genetics , Kidney/growth & development , Kidney/pathology , Kidney/surgery , Kidney Tubules, Proximal/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Nephrectomy , Nephrons/metabolism , Phosphorylation/genetics , Protein-Lysine 6-Oxidase/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Signal Transduction/drug effects , Sirolimus/pharmacology
11.
Am J Physiol Renal Physiol ; 318(3): F628-F638, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31904289

ABSTRACT

Excessive compensatory nephron hypertrophy (CNH) has been implicated in setting the stage for progressive nephron damage. Lack of a class III phosphatidylinositol 3-kinase (Pik3c3) inhibitor suitable for using in animals and lack of a Pik3c3-deficient animal model preclude the possibility of conclusively defining a role for Pik3c3 in CNH in previous studies. Here, we report that insertion of an Frt-flanked PGK-Neo cassette into intron 19 of the mouse Pik3c3 gene resulted in a hypomorphic allele. This allowed us to create a unique mouse model and provide the first definitive genetic evidence demonstrating whether Pik3c3 is essential for the regulation of CNH. Our results indicate that homozygous Pik3c3 hypomorphic (Pik3c3Hypo/Hypo) mice express significantly low levels of Pik3c3 than heterozygous Pik3c3 hypomorphic (Pik3c3Hypo/WT) littermates, which already express a lower level of Pik3c3 than wild-type (Pik3c3WT/WT) littermates. Interestingly, after unilateral nephrectomy (UNX), Pik3c3Hypo/Hypo mice develop a significantly lower degree of CNH than Pik3c3WT/WT mice and Pik3c3Hypo/WT mice, as revealed by measurement of kidney weight, kidney-to-body weight ratio, renal protein-to-DNA ratio, and morphometric analysis of proximal tubular and glomerular size. Mechanistically, UNX-induced mammalian target of rapamycin complex 1 (mTORC1) signaling to phosphorylation of ribosomal protein S6 (rpS6) in the remaining kidney was markedly inhibited in Pik3c3 hypomorphic mice. In conclusion, the present study reports a Pik3c3 hypomorphic mouse model and provides the first definitive evidence that Pik3c3 controls the degree of compensatory nephron hypertrophy. In addition, our signaling data provide the first definitive in vivo proof that Pik3c3 functions upstream of the mTORC1-S6 kinase 1-rpS6 pathway in the regulation of compensatory nephron hypertrophy.


Subject(s)
Class III Phosphatidylinositol 3-Kinases/metabolism , Nephrons/pathology , Animals , Class III Phosphatidylinositol 3-Kinases/genetics , Gene Expression Regulation, Enzymologic/physiology , Hypertrophy , Introns/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mutagenesis, Insertional , Nephrectomy , Nephrons/metabolism , Signal Transduction/physiology
12.
Kidney Int ; 95(6): 1359-1372, 2019 06.
Article in English | MEDLINE | ID: mdl-30905471

ABSTRACT

In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen. The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.


Subject(s)
Epithelial Sodium Channels/metabolism , Glomerulonephritis/drug therapy , Kidney Glomerulus/drug effects , Peptides, Cyclic/administration & dosage , Proteinuria/drug therapy , Animals , Blood Urea Nitrogen , Cell Line , Dinoprostone/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Female , Glomerulonephritis/blood , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Humans , Injections, Intraperitoneal , Kidney Glomerulus/cytology , Kidney Glomerulus/pathology , Mice , Nitric Oxide/metabolism , Patch-Clamp Techniques , Primary Cell Culture , Proteinuria/blood , Proteinuria/immunology , Proteinuria/pathology , Signal Transduction/drug effects , Signal Transduction/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
Am J Physiol Renal Physiol ; 315(6): F1822-F1832, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30280598

ABSTRACT

Renal fibrosis is a common pathological feature in chronic kidney disease (CKD), including diabetic kidney disease (DKD) and obstructive nephropathy. Multiple microRNAs have been implicated in the pathogenesis of both DKD and obstructive nephropathy, although the overall role of microRNAs in tubular injury and renal fibrosis in CKD is unclear. Dicer (a key RNase III enzyme for microRNA biogenesis) was specifically ablated from kidney proximal tubules in mice via the Cre-lox system to deplete micoRNAs. Proximal tubular Dicer knockout (PT- Dicer KO) mice and wild-type (WT) littermates were subjected to streptozotocin (STZ) treatment to induce DKD or unilateral ureteral obstruction (UUO) to induce obstructive nephropathy. Renal hypertrophy, renal tubular apoptosis, kidney inflammation, and tubulointerstitial fibrosis were examined. Compared with WT mice, PT- Dicer KO mice showed more severe tubular injury and renal inflammation following STZ treatment. These mice also developed higher levels of tubolointerstitial fibrosis. Meanwhile, PT- Dicer KO mice had a significantly higher Smad2/3 expression in kidneys than WT mice (at 6 mo of age) in both control and STZ-treated mice. Similarly, UUO induced more severe renal injury, inflammation, and interstitial fibrosis in PT- Dicer KO mice than WT. Although we did not detect obvious Smad2/3 expression in sham-operated mice (2-3 mo old), significantly more Smad2/3 was induced in obstructed PT- Dicer KO kidneys. These results supported a protective role of Dicer-dependent microRNA synthesis in renal injury and fibrosis development in CKD, specifically in DKD and obstructive nephropathy. Depletion of Dicer and microRNAs may upregulate Smad2/3-related signaling pathway to enhance the progression of CKD.


Subject(s)
DEAD-box RNA Helicases/deficiency , Diabetic Nephropathies/enzymology , Kidney Tubules, Proximal/enzymology , Nephritis/enzymology , Renal Insufficiency, Chronic/enzymology , Ribonuclease III/deficiency , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Ureteral Obstruction/enzymology , Animals , DEAD-box RNA Helicases/genetics , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Disease Models, Animal , Disease Progression , Fibrosis , Kidney Tubules, Proximal/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Nephritis/etiology , Nephritis/genetics , Nephritis/pathology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Ribonuclease III/genetics , Signal Transduction , Up-Regulation , Ureteral Obstruction/complications , Ureteral Obstruction/genetics , Ureteral Obstruction/pathology
14.
Biomed Pharmacother ; 101: 617-626, 2018 May.
Article in English | MEDLINE | ID: mdl-29518608

ABSTRACT

Recent preclinical and clinical evidence suggests that hyperuricemia (HU) is an independent risk factor for metabolic syndrome, hypertension, cardiovascular disease and chronic kidney disease. Receptor-interacting protein 3 (RIP3) is an important contributor in inducing programmed necrosis, representing a newly identified mechanism of cell death combining features of both apoptosis and necrosis. In our study, RIP3 was strongly expressed in mice with hyperuricemia. RIP3 deficiency attenuated hyperuricemia in mice, evidenced by reduced serum uric acid and creatinine and enhanced urinary uric acid and creatinine, as well as the improved histological alterations in renal sections. Additionally, RIP3-deletion reduced malondialdehyde (MDA), H2O2 and O2-, whereas enhanced superoxide dismutase (SOD), GSH and GSH-Px levels in potassium oxonate-induced mice. Potassium oxonate-treated mice showed significantly high mRNA levels of ATP-binding cassette, subfamily G, membrane 2 (ABCG2), organic anion transporter 1 (OAT1), OAT3, organic cation transporter 1 (OCT1) and organic cation/carnitine transporter 1 (OCTN1) in renal tissue samples, which were reversed by RIP3-deficiency. Meanwhile, down-regulation of circulating and kidney pro-inflammatory cytokines (IL-1ß, TNF-α and IL-6) were observed in RIP3-knockout mice with hyperuricemia, associated with inactivation of toll-like receptor 4 (TLR4), inhibitor of NF-κB alpha (IκBα) and nuclear factor kappa B (NF-κB). NLR family, pyrin domain-containing 3 (NLRP3) inflammasome was also suppressed by RIP3 knockout in potassium oxonate-treated mice. Importantly, RIP3-knockout mice exhibited the decrease of FAS-associated protein with a death domain (FADD), cleaved Caspase-8/-3 and Poly (ADP-ribose) polymerase (PARP) in renal samples, along with TUNEL reduction in mice with hyperuricemia. Similar results were observed in uric acid-incubated cells with RIP3 knockdown. Thus, we suggested that RIP3 played an important role in mice with hyperuricemia, which might be a novel signal pathway targeting for therapeutic strategies in future.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Hyperuricemia/chemically induced , Hyperuricemia/metabolism , Oxonic Acid/toxicity , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Acute Kidney Injury/prevention & control , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Hyperuricemia/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
15.
Cell Mol Life Sci ; 75(4): 669-688, 2018 02.
Article in English | MEDLINE | ID: mdl-28871310

ABSTRACT

Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.


Subject(s)
Autophagy/physiology , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/therapy , Therapies, Investigational , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Homeostasis/physiology , Humans , Kidney/metabolism , Kidney/physiology , Podocytes/metabolism , Podocytes/physiology , Signal Transduction/physiology , Therapies, Investigational/methods , Therapies, Investigational/trends
16.
Am J Physiol Renal Physiol ; 314(1): F81-F88, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28971990

ABSTRACT

Hyperinsulinemia has been hypothesized to cause hypertension in obesity, type 2 diabetes, and metabolic syndrome through a renal mechanism. However, it has been challenging to isolate renal mechanisms in chronic experimental models due, in part, to technical difficulties. In this study, we tested the hypothesis that a renal mechanism underlies insulin hypertension. We developed a novel technique to permit continuous insulin infusion through the renal artery in conscious rats for 7 days. Mean arterial pressure increased by ~10 mmHg in rats that were infused intravenously (IV) with insulin and glucose. Renal artery doses were 20% of the intravenous doses and did not raise systemic insulin levels or cause differences in blood glucose. The increase in blood pressure was not different from the IV group. Mean arterial pressure did not change in vehicle-infused rats, and there were no differences in renal injury scoring due to the renal artery catheter. Glomerular filtration rate, plasma renin activity, and urinary sodium excretion did not differ between groups at baseline and did not change significantly with insulin infusion. Thus, by developing a novel approach for chronic, continuous renal artery insulin infusion, we provided new evidence that insulin causes hypertension in rats through actions initiated within the kidney.


Subject(s)
Arterial Pressure/drug effects , Glomerular Filtration Rate/drug effects , Hypertension/etiology , Insulin/pharmacology , Renal Circulation/drug effects , Animals , Insulin/blood , Male , Nephrectomy/methods , Rats, Sprague-Dawley
17.
Kidney Int ; 92(5): 1194-1205, 2017 11.
Article in English | MEDLINE | ID: mdl-28709638

ABSTRACT

DNA methylation is an epigenetic mechanism that regulates gene transcription without changing primary nucleotide sequences. In mammals, DNA methylation involves the covalent addition of a methyl group to the 5-carbon position of cytosine by DNA methyltransferases (DNMTs). The change of DNA methylation and its pathological role in acute kidney injury (AKI) remain largely unknown. Here, we analyzed genome-wide DNA methylation during cisplatin-induced AKI by reduced representation bisulfite sequencing. This technique identified 215 differentially methylated regions between the kidneys of control and cisplatin-treated animals. While most of the differentially methylated regions were in the intergenic, intronic, and coding DNA sequences, some were located in the promoter or promoter-regulatory regions of 15 protein-coding genes. To determine the pathological role of DNA methylation, we initially examined the effects of the DNA methylation inhibitor 5-aza-2'-deoxycytidine and showed it increased cisplatin-induced apoptosis in a rat kidney proximal tubular cell line. We further established a kidney proximal tubule-specific DNMT1 (PT-DNMT1) knockout mouse model, which showed more severe AKI during cisplatin treatment than wild-type mice. Finally, interferon regulatory factor 8 (Irf8), a pro-apoptotic factor, was identified as a hypomethylated gene in cisplatin-induced AKI, and this hypomethylation was associated with a marked induction of Irf8. In the rat kidney proximal tubular cells, the knockdown of Irf8 suppressed cisplatin-induced apoptosis, supporting a pro-death role of Irf8 in renal tubular cells. Thus, DNA methylation plays a protective role in cisplatin-induced AKI by regulating specific genes, such as Irf8.


Subject(s)
Acute Kidney Injury/genetics , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Interferon Regulatory Factors/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Cell Line , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Decitabine , Disease Models, Animal , Epigenesis, Genetic , Gene Knockdown Techniques , Genome , Humans , Interferon Regulatory Factors/metabolism , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/drug therapy , Rats , Sequence Analysis, DNA/methods
18.
Am J Physiol Renal Physiol ; 313(1): F74-F84, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28404589

ABSTRACT

Podocytes are highly differentiated epithelial cells wrapping glomerular capillaries to form the filtration barrier in kidneys. As such, podocyte injury or dysfunction is a critical pathogenic event in glomerular disease. Autophagy plays an important role in the maintenance of the homeostasis and function of podocytes. However, it is less clear whether and how autophagy contributes to podocyte injury in glomerular disease. Here, we have examined the role of autophagy in adriamycin-induced nephropathy, a classic model of glomerular disease. We show that autophagy was induced by adriamycin in cultured podocytes in vitro and in podocytes in mice. In cultured podocytes, activation of autophagy with rapamycin led to the suppression of adriamycin-induced apoptosis, whereas inhibition of autophagy with chloroquine enhanced podocyte apoptosis during adriamycin treatment. To determine the role of autophagy in vivo, we established an inducible podocyte-specific autophagy-related gene 7 knockout mouse model (Podo-Atg7-KO). Compared with wild-type littermates, Podo-Atg7-KO mice showed higher levels of podocyte injury, glomerulopathy, and proteinuria during adriamycin treatment. Together, these observations support an important role of autophagy in protecting podocytes under the pathological conditions of glomerular disease, suggesting the therapeutic potential of autophagy induction.


Subject(s)
Antibiotics, Antineoplastic , Autophagy-Related Protein 7/metabolism , Autophagy , Doxorubicin , Podocytes/metabolism , Renal Insufficiency, Chronic/prevention & control , Animals , Apoptosis , Autophagy/drug effects , Autophagy-Related Protein 7/deficiency , Autophagy-Related Protein 7/genetics , Cells, Cultured , Cytoprotection , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mice, Inbred C57BL , Mice, Knockout , Podocytes/drug effects , Podocytes/pathology , Proteinuria/chemically induced , Proteinuria/metabolism , Proteinuria/pathology , Proteinuria/prevention & control , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction , Sirolimus/pharmacology , Time Factors
19.
J Sci Food Agric ; 97(12): 4235-4241, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28251668

ABSTRACT

BACKGROUND: The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. RESULT: Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg-1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. CONCLUSION: The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry.


Subject(s)
Carps , Fish Proteins/chemistry , Protein Hydrolysates/chemistry , Skin/chemistry , Streptococcus thermophilus/cytology , Animals , Biocatalysis , Culture Media/chemistry , Culture Media/metabolism , Fish Proteins/metabolism , Hydrolysis , Peptide Hydrolases/chemistry , Protein Hydrolysates/metabolism , Streptococcus thermophilus/growth & development , Streptococcus thermophilus/metabolism
20.
Am J Physiol Renal Physiol ; 312(6): F963-F970, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28356285

ABSTRACT

Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing.


Subject(s)
Epithelial Cells/metabolism , ErbB Receptors/metabolism , Exosomes/metabolism , Kidney Tubules/metabolism , Wound Healing , Aniline Compounds/pharmacology , Animals , Benzylidene Compounds/pharmacology , Cell Line , Epidermal Growth Factor/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/pathology , ErbB Receptors/antagonists & inhibitors , Exosomes/pathology , Gefitinib , Kidney Tubules/drug effects , Kidney Tubules/pathology , Mice , Polyenes/pharmacology , Polyunsaturated Alkamides/pharmacology , Quinazolines/pharmacology , Signal Transduction , Time Factors , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...