Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
1.
Clin Transl Med ; 14(7): e1749, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951127

ABSTRACT

During myocardial ischaemia‒reperfusion injury (MIRI), the accumulation of damaged mitochondria could pose serious threats to the heart. The migrasomes, newly discovered mitocytosis-mediating organelles, selectively remove damaged mitochondria to provide mitochondrial quality control. Here, we utilised low-intensity pulsed ultrasound (LIPUS) on MIRI mice model and demonstrated that LIPUS reduced the infarcted area and improved cardiac dysfunction. Additionally, we found that LIPUS alleviated MIRI-induced mitochondrial dysfunction. We provided new evidence that LIPUS mechanical stimulation facilitated damaged mitochondrial excretion via migrasome-dependent mitocytosis. Inhibition the formation of migrasomes abolished the protective effect of LIPUS on MIRI. Mechanistically, LIPUS induced the formation of migrasomes by evoking the RhoA/Myosin II/F-actin pathway. Meanwhile, F-actin activated YAP nuclear translocation to transcriptionally activate the mitochondrial motor protein KIF5B and Drp1, which are indispensable for LIPUS-induced mitocytosis. These results revealed that LIPUS activates mitocytosis, a migrasome-dependent mitochondrial quality control mechanism, to protect against MIRI, underlining LIPUS as a safe and potentially non-invasive treatment for MIRI.


Subject(s)
Disease Models, Animal , Myocardial Reperfusion Injury , Animals , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/therapy , Ultrasonic Waves , Male , Mice, Inbred C57BL , Mitochondria/metabolism
2.
CNS Neurosci Ther ; 30(7): e14824, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965803

ABSTRACT

INTRODUCTION: The diversity in microglial phenotypes and functions following traumatic brain injury (TBI) is poorly characterized. The aim of this study was to explore precise targets for improving the prognosis of TBI patients from a microglial perspective. OBJECTIVES: To assess whether the prognosis of TBI can be improved by modulating microglia function. RESULTS: In CD300LF-deficient mice, we observed an increase in glial cell proliferation, more extensive neuronal loss, and worsened neurological function post-TBI. Transcriptomic comparisons between CD300LF-positive and CD300LF-negative microglia illuminated that the neuroprotective role of CD300LF is principally mediated by the inhibition of the STING signaling pathway. In addition, this protective effect can be augmented using the STING pathway inhibitor C-176. CONCLUSIONS: Our research indicates that CD300LF reduces neuroinflammation and promotes neurological recovery after TBI, and that microglia are integral to the protective effects of CD300LF in this context. In summary, our findings highlight CD300LF as a critical molecular regulator modulating the adverse actions of microglia following acute brain injury and propose a novel therapeutic approach to enhance outcomes for patients with TBI.


Subject(s)
Brain Injuries, Traumatic , Membrane Proteins , Mice, Inbred C57BL , Microglia , Neuroinflammatory Diseases , Receptors, Immunologic , Signal Transduction , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Animals , Microglia/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Signal Transduction/physiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Male , Mice, Knockout
3.
Cancer Lett ; 597: 217080, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908542

ABSTRACT

XPO1 is an attractive and promising therapeutic target frequently overexpressed in multiple hematological malignancies. The clinical use of XPO1 inhibitors in natural killer/T-cell lymphoma (NKTL) is not well documented. Here, we demonstrated that XPO1 overexpression is an indicator of poor prognosis in patients with NKTL. The compassionate use of the XPO1 inhibitor selinexor in combination with chemotherapy showed favorable clinical outcomes in three refractory/relapsed (R/R) NKTL patients. Selinexor induced complete tumor regression and prolonged survival in sensitive xenografts but not in resistant xenografts. Transcriptomic profiling analysis indicated that sensitivity to selinexor was correlated with deregulation of the cell cycle machinery, as selinexor significantly suppressed the expression of cell cycle-related genes. CDK4/6 inhibitors were identified as sensitizers that reversed selinexor resistance. Mechanistically, targeting CDK4/6 could enhance the anti-tumor efficacy of selinexor via the suppression of CDK4/6-pRb-E2F-c-Myc pathway in resistant cells, while selinexor alone could dramatically block this pathway in sensitive cells. Overall, our study provids a preclinical proof-of-concept for the use of selinexor alone or in combination with CDK4/6 inhibitors as a novel therapeutic strategy for patients with R/R NKTL.

4.
Blood Adv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865712

ABSTRACT

Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) *2, termed CG001, that could potently block all three complement pathways. CRIg and FH bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, while FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the Factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in AP-induced hemolytic mouse and CP-induced MsPGN rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.

5.
Langmuir ; 40(26): 13688-13698, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38902198

ABSTRACT

The structure-property relationship of poly(vinyl chloride) (PVC)/CaCO3 nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO3 model demonstrate that 12 wt % CaCO3 modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains. Under the guidance of MD simulation, we experimentally prepared a transparent PVC/CaCO3 nanocomposite with good mechanical properties by in situ polymerization of monodispersed CaCO3 in vinyl chloride monomers. Interestingly, experimental tests indicate that the optimum toughness of a nanocomposite (a 368% increase in the elongation at break and 204% improvement of the impact strength) can be indeed realized by adding 12 wt % CaCO3 modified with oleic acid and dodecylbenzenesulfonic acid, which is remarkably consistent with the MD simulation prediction. In short, this work provides a proof-of-concept of using MD simulation to guide the experimental synthesis of PVC/CaCO3 nanocomposites, which can be considered as an example to develop other functional nanocomposites.

6.
Opt Express ; 32(12): 21102-21120, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859473

ABSTRACT

This study investigates the macroscopic and optical properties of cirrus clouds in the 32N region from July 2016 to May 2017, leveraging data from ground-based lidar observations and CALIOP to overcome the inconsistencies in detected cirrus cloud samples. Through extensive data analysis, statistical characteristics of cirrus clouds were discerned, revealing lidar ratio values of 28.5 ± 10.8 from ground-based lidar and 27.4 ± 11.2 from CALIOP. Validation with a decade of CALIOP data (2008-2018) confirmed these findings, presenting a consistent lidar ratio of 27.4 ± 12.0. A significant outcome of the analysis was the identification of a positive correlation between the lidar ratio and cloud centroid temperature, indicating a gradual decrease in the lidar ratio as temperatures dropped. The study established a fundamental consistency in their macroscopic properties, including cloud base height, cloud top height, cloud thickness, cloud centroid height, and cloud centroid temperature. The results for ground-based lidar (CALIOP) are: 10.0 ± 2.1 km (10.0 ± 2.2 km), 11.8 ± 2.1 km (11.5 ± 2.3 km), 1.87 ± 0.83 km (1.52 ± 0.71 km), and 10.5 ± 2.2 km, -46.9 ± 9.7°C (-47.1 ± 10.0°C).These properties exhibited seasonal variations, with cirrus clouds reaching higher altitudes in summer and lower in winter, influenced by the height of the tropopause. The optical properties of cirrus clouds were also analyzed, showing an annual average optical depth of 0.31 ± 0.35 for ground-based lidar and 0.32 ± 0.44 for CALIOP. The study highlighted the distribution of subvisible, thin, and thick cirrus clouds, with a notable prevalence of subvisible clouds during summer, suggesting their frequent formation above 14 km. Furthermore, the study observed linear growth in geometric thickness and optical depth up to 2.5 km from CALIOP and 2.9 km from ground-based lidar. Maximum optical depth was observed at cloud centroid temperatures of -35°C for CALIOP and -40°C for ground-based lidar, with optical depth decreasing as temperatures fell. This suggests that fully glaciated cirrus clouds exhibit the highest optical depth at warmer temperatures, within the complete glaciation temperature range of -35°C to -40°C.

7.
JCI Insight ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842940

ABSTRACT

Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here we show that ferroptosis negative regulation (FNR) signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/4EBP1 signaling promoted SLC7A11 protein synthesis, leading to ferroptosis inhibition in MEK inhibitor resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR-4EBP1 activity to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.

8.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822656

ABSTRACT

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Subject(s)
Climate Change , Harmful Algal Bloom , Salinity , Photosynthesis , Phytoplankton/growth & development , Phytoplankton/physiology , Carbon/metabolism , Carbon/analysis
9.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793860

ABSTRACT

In environments where silent communication is essential, such as libraries and conference rooms, the need for a discreet means of interaction is paramount. Here, we present a single-electrode, contact-separated triboelectric nanogenerator (CS-TENG) characterized by robust high-frequency sensing capabilities and long-term stability. Integrating this TENG onto the inner surface of a mask allows for the capture of conversational speech signals through airflow vibrations, generating a comprehensive dataset. Employing advanced signal processing techniques, including short-time Fourier transform (STFT), Mel-frequency cepstral coefficients (MFCC), and deep learning neural networks, facilitates the accurate identification of speaker content and verification of their identity. The accuracy rates for each category of vocabulary and identity recognition exceed 92% and 90%, respectively. This system represents a pivotal advancement in facilitating secure and efficient unobtrusive communication in quiet settings, with promising implications for smart home applications, virtual assistant technology, and potential deployment in security and confidentiality-sensitive contexts.

10.
Oncogene ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783101

ABSTRACT

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.

11.
Heliyon ; 10(9): e30505, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726194

ABSTRACT

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

12.
Ultrason Imaging ; 46(3): 178-185, 2024 May.
Article in English | MEDLINE | ID: mdl-38622911

ABSTRACT

To evaluate the inter-observer variability and the intra-observer repeatability of pulmonary transit time (PTT) measurement using contrast-enhanced ultrasound (CEUS) in healthy rabbits, and assess the effects of dilution concentration of ultrasound contrast agents (UCAs) on PTT. Thirteen healthy rabbits were selected, and five concentrations UCAs of 1:200, 1:100, 1:50, 1:10, and 1:1 were injected into the right ear vein. Five digital loops were obtained from the apical 4-chamber view. Four sonographers obtained PTT by plotting the TIC of right atrium (RA) and left atrium (LA) at two time points (T1 and T2). The frame counts of the first appearance of UCAs in RA and LA had excellent inter-observer agreement, with intra-class correlations (ICC) of 0.996, 0.988, respectively. The agreement of PTT among four observers was all good at five different concentrations, with an ICC of 0.758-0.873. The reproducibility of PTT obtained by four observers at T1 and T2 was performed well, with ICC of 0.888-0.961. The median inter-observer variability across 13 rabbits was 6.5% and the median variability within 14 days for 4 observers was 1.9%, 1.7%, 2.2%, 1.9%, respectively; The PTT of 13 healthy rabbits is 1.01 ± 0.18 second. The difference of PTT between five concentrations is statistically significant. The PTT obtained by a concentration of 1:200 and 1:100 were higher than that of 1:1, while there were no significantly differences in PTT of a concentration of 1:1, 1:10, and 1:50. PTT measured by CEUS in rabbits is feasible, with excellent inter-observer and intra-observer reliability and reproducibility, and dilution concentration of UCAs influences PTT results.


Subject(s)
Contrast Media , Feasibility Studies , Observer Variation , Ultrasonography , Animals , Rabbits , Reproducibility of Results , Ultrasonography/methods , Sulfur Hexafluoride/pharmacokinetics , Pulmonary Circulation/physiology
13.
Macromol Rapid Commun ; : e2400109, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594026

ABSTRACT

This work reports a highly-strain flexible fiber sensor with a core-shell structure utilizes a unique swelling diffusion technique to infiltrate carbon nanotubes (CNTs) into the surface layer of Ecoflex fibers. Compared with traditional blended Ecoflex/CNTs fibers, this manufacturing process ensures that the sensor maintains the mechanical properties (923% strain) of the Ecoflex fiber while also improving sensitivity (gauge factor is up to 3716). By adjusting the penetration time during fabrication, the sensor can be customized for different uses. As an application demonstration, the fiber sensor is integrated into the glove to develop a wearable gesture language recognition system with high sensitivity and precision. Additionally, the authors successfully monitor the pressure distribution on the curved surface of a soccer ball by winding the fiber sensor along the ball's surface.

14.
BMC Oral Health ; 24(1): 471, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637799

ABSTRACT

OBJECT: This study aimed to investigate the changes in the translucency and color of four different multi-layered zirconia materials when the sintering temperature were inaccurate. MATERIALS AND METHODS: Two hundred zirconia samples (11 × 11 × 1.0 mm) of four multi-layered zirconia, Upcera TT-GT (UG), Upcera TT-ML (UM), Cercon xt ML (CX), and Lava Esthetic (LE), were divided into five subgroups according to the sintering temperature: L1 (5% lower temperature), L2 (2.5% lower temperature), R (recommended sintering temperature), H2 (2.5% higher temperature), H1 (5% higher temperature). After sintering, color coordinates were measured. Then the translucency parameter (TP) values, and the color differences (between the inaccurate sintering temperature and the recommended temperature) of each zirconia specimen were calculated. Statistical analysis was performed by using three-way ANOVA tests, the one-way ANOVA, and Tukey's post hoc test. RESULTS: Three-way ANOVA results showed that material type, sintering temperature, specimen section, and their interactions significantly influenced the TP values (except for the interactions of specimen section and sintering temperature) (P < .05). TP values of zirconia specimens were significantly different in the inaccurate sintering temperatures (P < .05), except for the cervical and body sections of UG group (P > .05). Compared with recommended sintering temperature, higher sintering temperature caused higher TP values for CX, but lower for LE. Three-way ANOVA results showed that material type, sintering temperature, and their interactions significantly influenced the ∆E00 values (P < .05). There were no significant differences in ∆E00 values of UM and CX groups at different inaccurate sintering temperatures, and were clinical imperception (except for UM-L1) (∆E00 < 1.25). ∆E00 values of all zirconia specimens showed clinically acceptable (∆E00 < 2.23). CONCLUSION: The deviations in sintering temperature significantly influenced the translucency and color of tested multi-layered zirconia. The trends of translucency in the multi-layered zirconia depended on material type and the color changes of all zirconia materials were clinically acceptable at inaccurate sintering temperatures.


Subject(s)
Ceramics , Zirconium , Humans , Temperature , Materials Testing , Surface Properties , Color
15.
Int Immunopharmacol ; 132: 111953, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38599097

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is an important cause of early dysfunction and exacerbation of immune rejection in transplanted hearts. The integrin-related protein CD47 exacerbates myocardial ischemia-reperfusion injury by inhibiting the nitric oxide signaling pathway through interaction with thrombospondin-1 (TSP-1). In addition, the preservation quality of the donor hearts is a key determinant of transplant success. Preservation duration beyond four hours is associated with primary graft dysfunction. We hypothesized that blocking the CD47-TSP-1 system would attenuate ischemia-reperfusion injury in the transplanted heart and, thus, improve the preservation of donor hearts. METHODS: We utilized a syngeneic mouse heart transplant model to assess the effect of CD47 monoclonal antibody (CD47mAb) to treat MIRI. Donor hearts were perfused with CD47mAb or an isotype-matched control immunoglobulin (IgG2a) and were implanted into the abdominal cavity of the recipients after being stored in histidine-tryptophan-ketoglutarate (HTK) solution at 4 °C for 4 h or 8 h. RESULTS: At both the 4-h and 8-h preservation time points, mice in the experimental group perfused with CD47mAb exhibited prolonged survival in the transplanted heart, reduced inflammatory response and oxidative stress, significantly decreased inflammatory cell infiltration, and fewer apoptosis-related biomarkers. CONCLUSION: The application of CD47mAb for the blocking of CD47 attenuates MIRI as well as improves the preservation and prognosis of the transplanted heart in a murine heart transplant model.


Subject(s)
CD47 Antigen , Heart Transplantation , Mice, Inbred C57BL , Animals , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , CD47 Antigen/immunology , Mice , Male , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Organ Preservation/methods , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/metabolism , Thrombospondin 1/metabolism , Oxidative Stress/drug effects , Disease Models, Animal , Apoptosis/drug effects
16.
Vascular ; : 17085381241246093, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581427

ABSTRACT

BACKGROUND: Great saphenous vein (GSV) valve incompetence is one of the most common manifestations of chronic venous insufficiency (CVI) in the lower limbs. There have been no reported attempts to repair the valve prior to the appearance of varicose morphology. METHOD: We describe two cases. Before surgery, the male patient had obvious pigmentation in the ankle area, and the female patient had obvious pain and swelling in the lower limbs after prolonged standing. Neither patient has obvious varicose veins. After retrograde venography, both patients were found to have severe reflux of the GSV valves (Kinster IV). We performed internal valvuloplasty and sleeve wrapping in two patients. RESULTS: After surgery, both patients had a significant improvement in symptoms and no particular complaints. Vascular ultrasound also suggested a good outcome. CONCLUSION: This surgery is safe and feasible in the treatment of early GSV incompetence, with good short-term results; long-term results remain to be seen.

17.
Biochem Biophys Res Commun ; 711: 149894, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38603834

ABSTRACT

BACKGROUND: Low-grade glioma (LGG) has an extremely poor prognosis, and the mechanism leading to malignant development has not been determined. The aim of our study was to clarify the function and mechanism of anoikis and TIMP1 in the malignant progression of LGG. METHODS: We screened 7 anoikis-related genes from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a prognostic-predicting model. The study assessed the clinical prognosis, pathological characteristics, and immune cell infiltration in both high- and low-risk groups. Additionally, the potential modulatory effects of TIMP1 on proliferation, migration, and anoikis in LGG were investigated both in vivo and in vitro. RESULTS: In this study, we identified seven critical genes, namely, PTGS2, CCND1, TIMP1, PDK4, LGALS3, CDKN1A, and CDKN2A. Kaplan‒Meier (K‒M) curves demonstrated a significant correlation between clinical features and overall survival (OS), and single-cell analysis and mutation examination emphasized the heterogeneity and pivotal role of hub gene expression imbalances in LGG development. Immune cell infiltration and microenvironment analysis further elucidated the relationships between key genes and immune cells. In addition, TIMP1 promoted the malignant progression of LGG in both in vitro and in vivo models. CONCLUSIONS: This study confirmed that TIMP1 promoted the malignant progression of LGG by inhibiting anoikis, providing insights into LGG pathogenesis and potential therapeutic targets.


Subject(s)
Anoikis , Glioma , Tissue Inhibitor of Metalloproteinase-1 , Humans , Anoikis/genetics , Glioma/genetics , Glioma/immunology , Glioma/pathology , Prognosis , Tissue Inhibitor of Metalloproteinase-1/genetics , Animals , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice , Male , Cell Proliferation/genetics , Female , Mice, Nude , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Neoplasm Grading
18.
J Cardiothorac Surg ; 19(1): 112, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461352

ABSTRACT

BACKGROUND: Aortoesophageal fistula (AEF) is a rare condition characterized by communication between the aorta and esophagus. AEF caused by an esophageal foreign body is even rare, and there is currently no recommended standard treatment protocol. We report a case of delayed aortic rupture after the endoscopic removal of a fish bone, which was successfully treated with a combined approach of vascular stenting and thoracic surgery. CASE PRESENTATION: A 33-year-old man presented to the hospital after experiencing chest discomfort for 3 days following the accidental ingestion of a fish bone. Under endoscopic guidance, the fish bone was successfully removed, and the patient was subsequently admitted for medical therapy. On the fourth postoperative day, the patient suddenly developed hematemesis, and chest computed tomography angiography revealed the presence of an AEF. This necessitated urgent intervention; hence, thoracic surgery was performed and a vascular-covered stent was placed. Following the surgical procedure, the patient received active medical treatment, recovered well, and was successfully discharged from the hospital. CONCLUSIONS: In patients with esophageal perforation caused by foreign bodies, hospitalization for observation, computed tomography angiography examination, early use of antibiotics, and careful assessment of aortic damage are advised. Thoracic endovascular aortic repair and esophageal rupture repair may have benefits for the treatment of AEF.


Subject(s)
Aortic Diseases , Esophageal Fistula , Vascular Fistula , Male , Animals , Humans , Adult , Thoracic Surgery, Video-Assisted/adverse effects , Aortic Diseases/surgery , Aortic Diseases/complications , Esophageal Fistula/surgery , Esophageal Fistula/complications , Gastrointestinal Hemorrhage , Stents/adverse effects , Vascular Fistula/diagnostic imaging , Vascular Fistula/etiology , Vascular Fistula/surgery
19.
J Cardiothorac Surg ; 19(1): 150, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515132

ABSTRACT

Obstruction and/or reflux compromise during venous emptying can facilitate different pathophysiologies in chronic venous insufficiency (CVI). We present a patient with persistent lower limb CVI edema caused by post-thrombotic syndrome (PTS), who responded well to femoral vein valve therapy via axillary vein bypass after unsuccessful valvuloplasty, and led a normal life. During a 12 month observation period, bridging vessels completely restored original anatomical structures. In a literature study, no similar surgeries were reported, but we show that this operation may be feasible in selected patients.


Subject(s)
Venous Insufficiency , Humans , Venous Insufficiency/surgery , Femoral Vein/surgery , Lower Extremity/blood supply , Edema/etiology
20.
Sci Rep ; 14(1): 1891, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307913

ABSTRACT

In China, according to the 'Technical Operating Procedures for Blood Stations (2019 Edition),' blood stations are authorized to utilize Chemiluminescence Immunoassay (CLIA) to detect pathogen markers linked with transfusion-transmissible infections. However, currently, there is no approved CLIA reagent for the screening of blood-borne diseases in China, specifically for the detection of Hepatitis B surface antigen. The objective of this research project is to conduct a comprehensive evaluation of the performance of the Wantai Chemiluminescent Microparticle Hepatitis B surface antigen reagent. This study evaluates the performance of the Wantai Chemiluminescent Microparticle Immunoassay (CMIA) on the Wan200 + analyzer in screening for Hepatitis B Surface Antigen (HBsAg) in blood samples. The clinical trial component of this evaluation is included as part of the documentation submitted to the National Medical Products Administration (NMPA) of China for the approval of blood screening reagents. The evaluation plan of this study encompasses two main components: clinical trials and performance assessment. We adopted a controlled trial design, utilizing the WanTai Chemiluminescent Microparticle Immunoassay (CMIA) on the Wan200 + analyzer and the Enzyme-Linked Immunosorbent Assay (ELISA) to screen for Hepatitis B Surface Antigen (HBsAg) in routine blood donor samples and reference serum panel samples. To ensure the accuracy of the screening, we additionally employed Abbott's ELISA reagents and HBV DNA for validation. The assessment primarily focused on key performance indicators such as sensitivity, specificity, and analytical sensitivity. Moreover, this clinical trial data has been included as part of the submission to China's National Medical Products Administration (NMPA). In the clinical trials of this study, a total of 10,470 blood donor samples underwent simultaneous testing using both CMIA and ELISA methods. Across two clinical trials, there was remarkable concordance between CMIA and the two ELISA reagents, with Kappa values exceeding 0.82. Among the 269 samples that were double-reactive in the enzyme immunoassay (ELISA) tests, CMIA exhibited a 100% reactivity detection rate. However, CMIA produced 14 and 6 false-positive results in the respective clinical trials, resulting in specificities of 99.73% and 99.89%. In contrast, the specificities for Wantai ELISA and Xin Chuang ELISA were both greater than 99.94%.When testing samples in the gray zone serum plates, CMIA's detection limit significantly exceeded that of the two ELISA assays. CMIA had a detection cutoff of 0.05 IU/mL, while the two ELISA reagents had cutoffs of 0.1 IU/mL and 0.09 IU/mL, respectively. CMIA's detection limits for the adr and adw subtypes were 0.05 IU/mL, and for the ay subtype, it was 0.1 U/mL. The detection limit for 10 HBV mutant samples was 0.5 U/mL. In 165 cases where ELISA tested negative but HBV DNA tested positive, CMIA detected 5 HBsAg-positive samples. This study evaluated the performance of the Wantai CMIA in screening for HBsAg among blood donors. The results demonstrate outstanding performance of CMIA in both clinical trials and performance assessments, detecting all true positive samples with a sensitivity of 100%. It exhibits excellent concordance with the two ELISA assays. Of particular note is its superiority in early detection of HBsAg in the screening of early-stage hepatitis B infections, reducing the window period compared to ELISA. CMIA achieves a specificity exceeding 99.73% for negative blood donors, aligning with the European Union's standards for blood screening assay specificity. In summary, Wantai's CMIA displays high sensitivity and specificity in blood donor screening, making it suitable for screening blood donors in China.


Subject(s)
Amides , Hepatitis B Surface Antigens , Hepatitis B , Propionates , Humans , Blood Donors , China , DNA, Viral/analysis , Enzyme-Linked Immunosorbent Assay/methods , Hepatitis B/diagnosis , Hepatitis B virus , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...