Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37761352

ABSTRACT

Retinal diseases are a serious and widespread ophthalmic disease that seriously affects patients' vision and quality of life. With the aging of the population and the change in lifestyle, the incidence rate of retinal diseases has increased year by year. However, traditional diagnostic methods often require experienced doctors to analyze and judge fundus images, which carries the risk of subjectivity and misdiagnosis. This paper will analyze an intelligent medical system based on focal retinal image-aided diagnosis and use a convolutional neural network (CNN) to recognize, classify, and detect hard exudates (HEs) in fundus images (FIs). The research results indicate that under the same other conditions, the accuracy, recall, and precision of the system in diagnosing five types of patients with pathological changes under color retinal FIs range from 86.4% to 98.6%. Under conventional retinopathy FIs, the accuracy, recall, and accuracy of the system in diagnosing five types of patients ranged from 70.1% to 85%. The results show that the application of focus color retinal FIs in the intelligent medical system has high accuracy and reliability for the early detection and diagnosis of diabetic retinopathy and has important clinical applications.

2.
Phytomedicine ; 119: 154955, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572567

ABSTRACT

BACKGROUND: The Chinese herbal compound Xinmaikang (XMK) is effective in treating atherosclerosis (AS), although the associated mechanisms of action remain unclear. We hypothesize that XMK increases mitophagy via the PINK1/Parkin signaling pathway and decreases reactive oxygen species (ROS), thus treating AS. PURPOSE: To explore the above-mentioned mechanisms of action of XMK in AS. MATERIALS AND METHODS: Ultra-performance liquid chromatography assay was performed to clarify the composition of XMK. A 16-week high-fat diet was fed to APOE-/- mice to form an AS model. Next, mice were given XMK(0.95 g/kg/d, 1.99 g/kg/d, 3.98 g/kg/d, i.g.) or Atorvastatin(3 mg/kg/d, i.g.) or Rapamycin(4 mg/kg/d, i.p.) or XMK with Mdivi-1(40 mg/kg/d, i.p.) or an equivalent amount of normal saline for 4 weeks. Then mice were examined for AS plaque area, lesion area, collagen fiber, pro-inflammatory cytokines, lipid level, ROS level and mitophagy level. We assessed AS using Oil Red O, hematoxylin and eosin, and Sirius red staining, as well as ROS measurements. Mitophagy was evaluated by transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, single-cell Western blot, and immunofluorescence staining. In vitro, by oxidizing low-density lipoprotein, formation of RAW264.7 macrophage-derived foam cells induced. we induced foam cell formation in RAW264.7 macrophages. Then cells were incubated with XMK-medicated serum with or without Mdivi-1. We examined foam cell formation, ROS level, mitophagy level in cells. Finally, we knocked down the PINK1, and examined foam cell formation and PINK1/Parkin level in RAW264.7 macrophages. RESULTS: UPLC analysis revealed 102 main ingredients in XMK. In vivo, XMK at medium-dose or high-dose significantly reduced AS plaques, lipids, pro-inflammatory cytokines, and ROS and increased mitophagy. In further study, Single-cell western blot showed that mitophagy level in macrophages sorted from AS mice was lower than the control mice. While XMK improved mitophagy level. In vitro, XMK reduced foam cell formation and ROS and increased mitophagy. When PINK1 was knocked down, XMK's effects on foam cell formation and PINK1/Parkin pathway activation were reduced. CONCLUSION: The study shows that XMK is effective against AS by mediating macrophage mitophagy via the PINK1/Parkin signaling pathway. For the treatment of AS and drug discovery, it provides an experimental basis and target.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Mitophagy , Protein Kinases/metabolism , Mitochondria , Reactive Oxygen Species/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Plaque, Atherosclerotic/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Cytokines/metabolism
4.
Mol Med Rep ; 14(3): 1941-6, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27430617

ABSTRACT

Crouzon syndrome, a dominantly inherited disorder and the most common type of craniosynostosis syndrome, is caused by mutations in the fibroblast growth factor receptor 2 (FGFR 2) gene, and characterized by craniosynostosis, shallow orbits, ocular proptosis, midface hypoplasia and a curved, beak­like nose. The purpose of the present study was to investigate the fibroblast growth factor receptor 2 (FGFR 2) gene in two Chinese families with Crouzon syndrome and to characterize the associated clinical features. Two families underwent complete ophthalmic examination, and three patients in two families were diagnosed with Crouzon syndrome. Genomic DNA was extracted from leukocytes of peripheral blood samples, which were collected from the family members and 200 unrelated control subjects from the same population. Exons 8 and 10 of the FGFR 2 gene were amplified using polymerase chain reaction analysis and were directly sequenced. Ophthalmic examinations, including best­corrected visual acuity, slit­lamp examination, fundus examination and Computerized Tomography scans, and physical examinations were performed to exclude systemic diseases. These patients were affected with shallow orbits and ocular proptosis, accompanied by midface hypoplasia, craniosynostosis, strabismus or papilloedema, with clinically normal hands and feet. A heterozygous FGFR 2 missense mutation, c.811­812insGAG (p.273insGlu) in exon 8 was identified in the affected individual, but not in the unaffected family members or the normal control individuals in family 1. In family 2, another heterozygous FGFR 2 missense mutation, c.842A>G (P.Tyr281Cys or Y281C), in exon 8 was identified in the affected boy and his mother, but not in the unaffected family members or the normal control individuals. Although FGFR 2 gene mutations and polymorphisms have been reported in various ethnic groups, particularly in the area of osteology, the present study reported for the first time, to the best of our knowledge, the identification of two novel FGFR 2 gene mutations in Chinese patients with Crouzon syndrome.


Subject(s)
Craniofacial Dysostosis/metabolism , Heterozygote , Mutation, Missense , Receptor, Fibroblast Growth Factor, Type 2/genetics , Asian People/genetics , Child, Preschool , Craniofacial Dysostosis/genetics , DNA Mutational Analysis , Female , Humans , Infant , Male , Pedigree
5.
Nature ; 531(7594): 323-8, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26958831

ABSTRACT

The repair and regeneration of tissues using endogenous stem cells represents an ultimate goal in regenerative medicine. To our knowledge, human lens regeneration has not yet been demonstrated. Currently, the only treatment for cataracts, the leading cause of blindness worldwide, is to extract the cataractous lens and implant an artificial intraocular lens. However, this procedure poses notable risks of complications. Here we isolate lens epithelial stem/progenitor cells (LECs) in mammals and show that Pax6 and Bmi1 are required for LEC renewal. We design a surgical method of cataract removal that preserves endogenous LECs and achieves functional lens regeneration in rabbits and macaques, as well as in human infants with cataracts. Our method differs conceptually from current practice, as it preserves endogenous LECs and their natural environment maximally, and regenerates lenses with visual function. Our approach demonstrates a novel treatment strategy for cataracts and provides a new paradigm for tissue regeneration using endogenous stem cells.


Subject(s)
Cataract/therapy , Lens, Crystalline/cytology , Lens, Crystalline/physiology , Recovery of Function , Regeneration/physiology , Stem Cells/cytology , Vision, Ocular/physiology , Animals , Cataract/congenital , Cataract/pathology , Cataract/physiopathology , Cataract Extraction , Epithelial Cells/cytology , Epithelial Cells/metabolism , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Homeostasis , Humans , Macaca , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Stem Cells/metabolism
6.
Mol Med Rep ; 12(2): 2584-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25936525

ABSTRACT

The purpose of the current study was to investigate the 11 bestrophin-1 (BEST1) exons in patients with best vitelliform macular dystrophy (BVMD), and to characterize the associated clinical features. Complete ophthalmic examinations were conducted on two families, and two family members were diagnosed with BVMD. Genomic DNA was extracted from the leukocytes of peripheral blood collected from the patients and their family members, in addition to 100 unrelated control subjects recruited from the same population. The polymerase chain reaction was used to amplify a total of 11 exons of the BEST1 gene, which were directly sequenced. Ophthalmic examinations, including best-corrected visual acuity, slit-lamp examination, fundus examination, fundus photography and fluorescein angiography imaging, as well as anterior segment analysis with Pentacam and optical coherence tomography, were conducted. The patients exhibited yellowish lesions in the macular area. A heterozygous mutation c.910_912delGAT (p.304del Asp) in exon 7 was identified in Case 1. A heterozygous BEST1 missense mutation c.685T>G (p.Trp229Gly) in exon 5 was identified in Case 2, but not in any of the unaffected family members or normal controls. Although BEST1 gene mutations and polymorphisms have previously been reported in various ethnic groups, the current study identified, for the first time to the best of our knowledge, two novel BEST1 gene mutations in patients with BVMD.


Subject(s)
Chloride Channels/genetics , Eye Proteins/genetics , Mutation , Retina/metabolism , Vitelliform Macular Dystrophy/genetics , Base Sequence , Bestrophins , Case-Control Studies , Chloride Channels/metabolism , Exons , Eye Proteins/metabolism , Female , Gene Expression , Heterozygote , Humans , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/metabolism , Male , Molecular Sequence Data , Pedigree , Retina/pathology , Sequence Analysis, DNA , Vitelliform Macular Dystrophy/metabolism , Vitelliform Macular Dystrophy/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...