Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Dev Dyn ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270285

ABSTRACT

BACKGROUND: The two-pore domain potassium (K2P) channels are a major type of potassium channels that maintain the cell membrane potential by conducting passive potassium leak currents independent of voltage change. They play prominent roles in multiple physiological processes, including neuromodulation, perception of pain, breathing and mood control, and response to volatile anesthetics. Mutations in K2P channels have been linked to many human diseases, such as neuronal and cardiovascular disorders and cancers. Significant progress has been made to understand their protein structures, physiological functions, and pharmacological modifiers. However, their expression and function during embryonic development remain largely unknown. RESULTS: We employed the zebrafish model and identified 23 k2p genes using BLAST search and gene cloning. We first analyzed vertebrate K2P channel evolution by phylogenetic and syntenic analyses. Our data revealed that the six subtypes of the K2P genes have already evolved in invertebrates long before the emergence of vertebrates. Moreover, the vertebrate K2P gene number increased, most likely due to two whole-genome duplications. Furthermore, we examined zebrafish k2p gene expression during early embryogenesis by in situ hybridization. Each subgroup's genes showed similar but distinct gene expression domains with some exceptions. Most of them were expressed in neural tissues consistent with their known function of neural excitability regulation. However, a few k2p genes were expressed temporarily in specific tissues or organs, suggesting that these K2P channels may be needed for embryonic development. CONCLUSIONS: Our phylogenetic and developmental analyses of K2P channels shed light on their evolutionary history and potential roles during embryogenesis related to their physiological functions and human channelopathies.

2.
Fitoterapia ; 172: 105713, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949304

ABSTRACT

The chemical structure of sinoacutine is formed by a phenanthrene nucleus and an ethylamine bridge. Because it has a similar parent structure to morphine, it is subdivided into morphinane. At present, all reports have pointed out that the basic skeleton of morphine alkaloids is salutaridine (the isomer of sinoacutine), which is generated by the phenol coupling reaction of (R)-reticuline. This study shows that the biosynthetic precursors of sinoacutine and salutaridine are different. In this paper, the sinoacutine synthetase (SinSyn) gene was cloned from Sinomenium acutum and expressed SinSyn protein. Sinoacutine was produced by SinSyn catalyzed (S)-reticuline, according to the results of enzyme-catalyzed experiments. The optical activity, nuclear magnetic resonance, and mass spectrum of sinoacutine and salutaridine were analyzed. The classification and pharmacological action of isoquinoline alkaloids were discussed. It was suggested that sinoacutine should be separated from morphinane and classified as sinomenine alkaloids.


Subject(s)
Alkaloids , Morphinans , Molecular Structure , Morphinans/chemistry , Morphinans/metabolism , Morphinans/pharmacology , Alkaloids/pharmacology , Morphine Derivatives
3.
Front Psychol ; 13: 1044505, 2022.
Article in English | MEDLINE | ID: mdl-36571023

ABSTRACT

Facial skin colour, a key factor related to impressions, is widely used by CG character designers to build characters with different storylines. The previous research provided essential suggestions for creating an attractive facial image. However, the suggestions of the prior research are insufficient for building the characters to resonate with the current public, especially young people. The present study investigates the influence of skin colour (whiteness and hue angle) on the femininity, masculinity and likableness perception of Chinese female and male images. A psychophysical experiment was carried out to investigate these relationships. The categorical judgement results reveal that whiteness significantly impacted the feminine-masculine perception of the Chinese male image and the likableness perception of the Chinese female and male image. This connection between the whiteness and likability of the male facial image could be related to the beauty trends in the last decade. The hue angle only significantly influenced the likability perception of the Chinese female image. This result is agreed with past research in the same area.

4.
BMC Musculoskelet Disord ; 23(1): 1061, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471308

ABSTRACT

OBJECTIVE: The aims of this work are to present a classification of "complex fracture" and "simple fracture", to compare their features, treatments and prognosis in patients with giant cell tumour with pathologic fractures around the knee, and to determine the best surgical method for patients who have giant cell tumour around the knee with different degrees of fracture. METHODS: Data from 130 patients with pathologic fractures from giant cell tumour around the knee who underwent surgical treatment from March 2000 to November 2015 at 6 institutes around China were collected and analysed. A multicentric study design was used to explore the epidemiological features and to compare differences in the surgical procedures and prognosis of the two fracture groups. The mean age at diagnosis was 37.1 years old (range, 13-77 years). The median follow-up was 126.5 months, ranging from 68 to 370 months. RESULTS: The general clinical and imaging features of the groups of patients with simple and complex fractures, namely, sex, age, the lesion site, living or working environment, eccentric growth patterns, Campanacci grading system, and duration of symptoms before treatment, showed varying degrees of differences, but with no statistical significance (p > 0.05). The incidence rate of surrounding soft tissue mass was 35.2% (32/91) in the group with simple fractures, whereas it was 87.2% (34/39) in the group with complex fractures, which showed a significant difference (p < 0.05). Wide resection and reconstruction with joint replacement were performed more often in patients with complex fractures (61.5%, 24/39). Intralesional procedures were performed more often in patients with simple fractures (56.0%, 51/91). The difference showed significant differences (p < 0.05). The local recurrence rate was 17.6% (16/91) in the group with simple fractures, whereas it was 10.3% (4/39) in the complex fracture group, showing a significant difference (p < 0.05). A total of 2.3% of patients (n = 3,3/130) developed a skip lesion. The complication rates were 4.6% (4/87) and 14.7% (5/34), respectively, in the two groups with simple or complex fractures, showing a significant difference (p < 0.05). The mean MSTS and TESS scores with simple fractures were 26.6 (range, 13-30) and 84.1 (range, 29-100), respectively, whereas the mean scores in the group with complex fractures were 25.5 (range, 18-30) and 78.3 (range, 30-100), respectively, also showing a significant difference (p < 0.05). CONCLUSION: Our classification of "simple fracture" and "complex fracture" could guide decisions regarding the best surgical method for lesions in patients who have giant cell tumour around the knee with different degrees of fracture.


Subject(s)
Bone Neoplasms , Fractures, Spontaneous , Giant Cell Tumor of Bone , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Fractures, Spontaneous/etiology , Giant Cell Tumor of Bone/diagnostic imaging , Giant Cell Tumor of Bone/epidemiology , Giant Cell Tumor of Bone/surgery , Retrospective Studies , Bone Neoplasms/complications , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/epidemiology , Neoplasm Recurrence, Local/surgery , Treatment Outcome
5.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36179668

ABSTRACT

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Brain , Collagen , Humans , Laminin , Midkine , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/physiology , Pericytes
6.
RSC Adv ; 12(17): 10267-10279, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35424976

ABSTRACT

Removing salt from dye/salt mixtures using nanofiltration (NF) membranes needs to be improved to ensure high permeability, high selectivity, and antifouling performance. In this study, we used an interfacial polymerization (IP) technique to create a novel thin-film nanocomposite NF membrane by introducing two-dimensional MXene Ti3C2T x into the polyamide (PA) layer. Enhanced IP reaction rate facilitated the overflow of residual solvent from the fresh PA layer's edge due to the MXene-mediated IP strategy, resulting considerable bubble-like nodules on the membrane surface. The unique nanostructure of PA effective layer could be tuned by controlling the MXene concentration in aqueous phase solution, which finally promoted the obtained membranes with superb permselectivity. In this way, the water permeability was elevated to a maximum value of 45.12 L m-1 h-1, nearly 1.58-fold compared to the PA-pristine membrane. Moreover, the Ti3C2T x /NF membrane exhibited a superior dye/monovalent salt separation coefficient of 820, outperforming the pristine PA membrane and other NF membranes in the literature. Additionally, the MXene-assisted IP strategy designed an effective dye anti-fouling hydration layer, which played a crucial role in fouling resistance. This work illustrates a novel use of Ti3C2T x to successfully regulate high-performance TFN PA membranes for potential application in dye/salt separation.

7.
Mol Genet Genomics ; 297(2): 553-559, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35212839

ABSTRACT

Nonsyndromic cleft lip with or without palate (NSCL/P) is a common birth defect involving genetic factors. We conducted this case-control study to verify the association of ten single-nucleotide polymorphisms (SNPs) of six genes (VAX1, MAFB, PAX7, ABCA4, NTN1, and NOG) with NSCL/P in the Chinese population. The study included 249 NSCL/P patients, 62 nonsyndromic cleft palate only (NSCPO) patients and 480 controls. Three loci, namely, VAX1 rs7078160, MAFB rs11696257, and NTN1 rs4791774, were associated with NSCL/P (Bonferroni method adjusted p values were 0.020, 0.00031, and 0.030, respectively). We also found that the disease risk of individuals carrying both VAX1 rs7078160 and NTN1 rs4791774 was higher than those carrying only one of them (p = 4.50 × 10-4 and 6.03 × 10-3, respectively). SNPs of genes VAX1 rs7078160, MAFB rs11696257, and NTN1 rs4791774 increased NSCL/P risk in the Chinese population.


Subject(s)
Cleft Lip , Cleft Palate , Case-Control Studies , China/epidemiology , Cleft Lip/genetics , Cleft Palate/genetics , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide/genetics
8.
Science ; 375(6579): eabk2346, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35084970

ABSTRACT

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Subject(s)
Interneurons/physiology , Median Eminence/embryology , Neural Stem Cells/physiology , Neurogenesis , Prosencephalon/cytology , Animals , Animals, Newborn , Cell Movement , Cell Proliferation , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , GABAergic Neurons/cytology , GABAergic Neurons/physiology , Gene Expression Profiling , Gestational Age , Humans , Interneurons/cytology , Median Eminence/cytology , Median Eminence/growth & development , Mice , Neural Stem Cells/transplantation , Prosencephalon/embryology , Prosencephalon/growth & development , Transplantation, Heterologous
9.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34228783

ABSTRACT

Expansion microscopy (ExM) increases the effective resolving power of any microscope by expanding the sample with swellable hydrogel. Since its invention, ExM has been successfully applied to a wide range of cell, tissue, and animal samples. Still, fluorescence signal loss during polymerization and digestion limits molecular-scale imaging using ExM. Here, we report the development of label-retention ExM (LR-ExM) with a set of trifunctional anchors that not only prevent signal loss but also enable high-efficiency labeling using SNAP and CLIP tags. We have demonstrated multicolor LR-ExM for a variety of subcellular structures. Combining LR-ExM with superresolution stochastic optical reconstruction microscopy (STORM), we have achieved molecular resolution in the visualization of polyhedral lattice of clathrin-coated pits in situ.


Subject(s)
Microscopy, Fluorescence/methods , Microtubules/ultrastructure , Mouse Embryonic Stem Cells/ultrastructure , Osteoblasts/ultrastructure , Staining and Labeling/methods , Animals , Antibodies/chemistry , Biotin/chemistry , Cell Line, Tumor , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice , Microtubules/metabolism , Mouse Embryonic Stem Cells/metabolism , Osteoblasts/metabolism , Streptavidin/chemistry , Succinimides/chemistry
10.
Nature ; 588(7838): 459-465, 2020 12.
Article in English | MEDLINE | ID: mdl-32866962

ABSTRACT

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Subject(s)
Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Progranulins/deficiency , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , Aging/genetics , Aging/pathology , Animals , Cell Nucleus/genetics , Cell Nucleus/pathology , Complement Activation/drug effects , Complement Activation/immunology , Complement C1q/antagonists & inhibitors , Complement C1q/immunology , Complement C3b/antagonists & inhibitors , Complement C3b/immunology , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Male , Mice , Nuclear Pore/metabolism , Nuclear Pore/pathology , Progranulins/genetics , RNA-Seq , Single-Cell Analysis , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/genetics , Thalamus/metabolism , Thalamus/pathology , Transcriptome
11.
J Neurosci ; 40(34): 6503-6521, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32661024

ABSTRACT

Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex.SIGNIFICANCE STATEMENT We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development.


Subject(s)
Cerebral Cortex/blood supply , Cerebral Cortex/growth & development , Microglia/physiology , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Capillaries/growth & development , Capillaries/ultrastructure , Cerebral Cortex/ultrastructure , Female , Humans , Male , Mice, Inbred C57BL , Microglia/ultrastructure , Somatosensory Cortex/metabolism
12.
Elife ; 92020 05 26.
Article in English | MEDLINE | ID: mdl-32452758

ABSTRACT

​Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.


Subject(s)
Gene Expression Regulation , Interneurons/metabolism , MafB Transcription Factor/physiology , Proto-Oncogene Proteins c-maf/physiology , Animals , Female , MEF2 Transcription Factors/metabolism , Mice , Nervous System Diseases/etiology , Pregnancy , Protein Precursors/genetics , Receptors, CXCR4/metabolism , Receptors, Opioid/genetics , Single-Cell Analysis , Synaptosomal-Associated Protein 25/metabolism , Transcriptome
13.
J Neurotrauma ; 37(22): 2414-2423, 2020 11 15.
Article in English | MEDLINE | ID: mdl-30794049

ABSTRACT

Translation of traumatic brain injury (TBI) research findings from bench to bedside involves aligning multi-species data across diverse data types including imaging and molecular biomarkers, histopathology, behavior, and functional outcomes. In this review we argue that TBI translation should be acknowledged for what it is: a problem of big data that can be addressed using modern data science approaches. We review the history of the term big data, tracing its origins in Internet technology as data that are "big" according to the "4Vs" of volume, velocity, variety, veracity and discuss how the term has transitioned into the mainstream of biomedical research. We argue that the problem of TBI translation fundamentally centers around data variety and that solutions to this problem can be found in modern machine learning and other cutting-edge analytical approaches. Throughout our discussion we highlight the need to pull data from diverse sources including unpublished data ("dark data") and "long-tail data" (small, specialty TBI datasets undergirding the published literature). We review a few early examples of published articles in both the pre-clinical and clinical TBI research literature to demonstrate how data reuse can drive new discoveries leading into translational therapies. Making TBI data resources more Findable, Accessible, Interoperable, and Reusable (FAIR) through better data stewardship has great potential to accelerate discovery and translation for the silent epidemic of TBI.


Subject(s)
Big Data , Brain Injuries, Traumatic , Information Dissemination , Translational Research, Biomedical , Animals , Disease Models, Animal , Humans
14.
Chemosphere ; 222: 742-756, 2019 May.
Article in English | MEDLINE | ID: mdl-30738317

ABSTRACT

Amine-based CO2 capture (ACC) has become one cost-effective method for reducing carbon emissions in order to mitigate climate changes. The amine-rich wastewater (ARWW) generated from ACC may contain a series of degradation products of amine-based solvents (ABSs). These products are harmful for ecological environment and human health. Effective and reliable ARWW treatment methods are highly required for mitigating the harmfulness. However, there is a lack of a comprehensive review of the existing limited methods that can guide ARWW-related technological advancements and treatment practices. To fill this gap, the review is achieved in this study. All available technologies for treating the ARWW from washwater, condenser, and reclaimer units in ACC are examined based on clarification of degradation mechanisms and ARWW compounds. A series of significant findings and recommendations are revealed through this review. For instance, ARWW treatment methods should be selected according to degradation conditions and pollution concentrations. UV light can be only used for treating wastewater from washwater and condenser units in ACC. Biological activated carbon is feasible for removing nitrosamines from washwater and condenser units. Sequence batch reactors, microbial fuel cells, and the other techniques for removing amines and similar degradation products are applicable for treating ARWW. This review provides scientific support for the selection and improvement of ARWW treatment techniques, the mitigation of ACC's consequences in environment, health and other aspects, and the extensive development and applications of ACC systems.


Subject(s)
Amines , Carbon Dioxide , Wastewater , Water Purification/methods , Carbon/isolation & purification , Humans , Ultraviolet Rays , Wastewater/chemistry
15.
Environ Sci Pollut Res Int ; 24(13): 12437-12454, 2017 May.
Article in English | MEDLINE | ID: mdl-28361398

ABSTRACT

In this study, an inexact two-stage fuzzy gradient chance-constrained programming (ITSFGP) method is developed and applied to the water resources management in the Heshui River Basin, Jiangxi Province, China. The optimization model is established by incorporating interval programming, two-stage stochastic programming, and fuzzy gradient chance-constrained programming within an optimization framework. The hybrid model can address uncertainties represented as fuzzy sets, probability distributions, and interval numbers. It can effectively tackle the interactions between pre-regulated economic targets and the associated environmental penalties attributed to water allocation schemes and reflect the tradeoffs between economic revenues and system-failure risk. Furthermore, uncertainties associated with the decision makers' preferences are considered in decision-making processes. The obtained results can provide decision support for the local sustainable economic development and water resources allocation strategies under multiple uncertainties.


Subject(s)
Fuzzy Logic , Water , China , Models, Theoretical , Stochastic Processes , Uncertainty
16.
Environ Sci Pollut Res Int ; 24(9): 8711-8721, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28210949

ABSTRACT

As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.


Subject(s)
Conservation of Natural Resources/methods , Models, Theoretical , Refuse Disposal/methods , Solid Waste , Beijing , City Planning , Conservation of Natural Resources/economics , Incineration/economics , Incineration/methods , Refuse Disposal/economics , Soil/chemistry , Waste Disposal Facilities/economics
17.
Environ Sci Pollut Res Int ; 24(8): 7236-7252, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28101709

ABSTRACT

Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.


Subject(s)
Fuzzy Logic , Models, Theoretical , Solid Waste , Waste Management/methods , Beijing , Nonlinear Dynamics
18.
G3 (Bethesda) ; 6(10): 3017-3026, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27527793

ABSTRACT

Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals.


Subject(s)
Developmental Biology , Drosophila Proteins/genetics , Drosophila/genetics , Enhancer Elements, Genetic , Animals , Chromosome Mapping , Developmental Biology/methods , Drosophila/metabolism , Drosophila Proteins/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Genes, Reporter , Immunohistochemistry , Larva , Mutagenesis, Insertional , Organ Specificity/genetics , Research
19.
Nat Biotechnol ; 34(9): 973-81, 2016 09.
Article in English | MEDLINE | ID: mdl-27454740

ABSTRACT

The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.


Subject(s)
Brain/metabolism , Imaging, Three-Dimensional/methods , Molecular Imaging/methods , Proteome/metabolism , Synapses/metabolism , Synapses/ultrastructure , Animals , Brain/ultrastructure , Female , Gene Expression Profiling/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Immunoassay/methods , Male , Mice , Nerve Tissue Proteins/metabolism , Proteome/ultrastructure , Tissue Distribution
20.
J Pharm Pharmacol ; 62(4): 521-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20604843

ABSTRACT

OBJECTIVES: Total steroidal saponins extracted from the rhizome of Paris polyphylla (TSSP) have been used in China for the treatment of abnormal uterine bleeding. The aim of this study was to analyse the structure-activity relationship of steroidal saponins purified from P. polyphylla Sm. var. yunnanensis on rat myometrial contractions, and investigate the synergism among themselves as well as with known inherent agonists, such as Prostaglandin F(2alpha) (PGF-2alpha). METHODS: In this study, 22 steroidal saponins purified from TSSP were screened for their contractile activity in isolated uterine strips from estrogen-primed rats. KEY FINDINGS: It was shown that spirostanol glycosides exhibited inducible or inhibitory activity in rat uterine contraction based on the difference of their structures, which was not only attributed in part to the number, the length and the position of sugar side chains attached by a glycoside, but also related to the structure of the aglycone. Furthermore, synergistic actions were observed among pennogenin or diosgenin glycosides as well as with the known inherent agonist PGF-2alpha, indicating they may share, at least in part, similar pathways with PGF-2alpha in stimulating myometrial contractions. Finally, the contractile response of rat myometrium to spirostanol glycosides was significantly enhanced with advancing pregnancy. CONCLUSIONS: Together, these data support the possibility that some spirostanol glycosides may represent a new type of contractile agonist for the uterus and their synergism may be responsible for the therapeutic effect of TSSP on abnormal uterine bleeding.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Liliaceae/chemistry , Myometrium/drug effects , Phytosterols/pharmacology , Saponins/pharmacology , Animals , Dinoprost/metabolism , Diosgenin/pharmacology , Drug Synergism , Drugs, Chinese Herbal/chemistry , Estrogens/pharmacology , Female , Myometrium/physiology , Phytosterols/chemistry , Pregnancy , Rats , Rats, Wistar , Rhizome , Saponins/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...