Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 15: 1364858, 2024.
Article in English | MEDLINE | ID: mdl-38716113

ABSTRACT

The hippocampus is one of the brain areas affected by autism spectrum disorder (ASD). Individuals with ASD typically have impairments in hippocampus-dependent learning, memory, language ability, emotional regulation, and cognitive map creation. However, the pathological changes in the hippocampus that result in these cognitive deficits in ASD are not yet fully understood. In the present review, we will first summarize the hippocampal involvement in individuals with ASD. We will then provide an overview of hippocampal structural and functional abnormalities in genetic, environment-induced, and idiopathic animal models of ASD. Finally, we will discuss some pharmacological and non-pharmacological interventions that show positive impacts on the structure and function of the hippocampus in animal models of ASD. A further comprehension of hippocampal aberrations in ASD might elucidate their influence on the manifestation of this developmental disorder and provide clues for forthcoming diagnostic and therapeutic innovation.

2.
Molecules ; 29(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338303

ABSTRACT

The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.


Subject(s)
Melitten , Quorum Sensing , Melitten/pharmacology , Molecular Docking Simulation , Biofilms , Anti-Bacterial Agents/chemistry , Virulence Factors/metabolism , Pseudomonas aeruginosa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...