Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 56(6): 1257-1269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38802564

ABSTRACT

Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Salt Tolerance , Triticum , Triticum/genetics , Plant Proteins/genetics , Salt Tolerance/genetics , Cation Transport Proteins/genetics , Genome-Wide Association Study , Oryza/genetics , Symporters/genetics , Symporters/metabolism , Bread , Plants, Genetically Modified , Brachypodium/genetics , Salinity
2.
Rev Esp Enferm Dig ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38235685

ABSTRACT

We reported a 47-year-old female with a history of laparoscopic cholecystectomy presented with a complex duodenal fistula. The bleeding artery embolization and endoscopic suture of the duodenal fistula were performed successfully. We highlight the endoscopic tissue clip suture as a safe and feasible option when surgery is too risky.

3.
Front Plant Sci ; 14: 1199721, 2023.
Article in English | MEDLINE | ID: mdl-37409302

ABSTRACT

Mercury (Hg) is a highly toxic heavy metal entering the human body through the food chain after absorption by plant. Exogenous selenium (Se) has been suggested as a potential solution to reduce Hg concentration in plants. However, the literature does not provide a consistent picture of the performance of Se on the accumulation of Hg in plant. To obtain a more conclusive answer on the interactions of Se and Hg, 1,193 data records were collected from 38 publications for this meta-analysis, and we tested the effects of different factors on Hg accumulation by meta-subgroup analysis and meta-regression model. The results highlighted a significant dose-dependent effect of Se/Hg molar ratio on the reduction of Hg concentration in plants, and the optimum condition for inhibiting Hg accumulation in plants is at a Se/Hg ratio of 1-3. Exogenous Se significantly reduced Hg concentrations in the overall plant species, rice grains, and non-rice species by 24.22%, 25.26%, and 28.04%, respectively. Both Se(IV) and Se(VI) significantly reduced Hg accumulation in plants, but Se(VI) had a stronger inhibiting effect than Se(IV). Se significantly decreased the BAFGrain in rice, which indicated that other physiological processes in rice may be involved in restricting uptake from soil to rice grain. Therefore, Se can effectively reduce Hg accumulation in rice grain, which provides a strategy for effectively alleviating the transfer of Hg to the human body through the food chain.

4.
Dis Markers ; 2022: 1487165, 2022.
Article in English | MEDLINE | ID: mdl-36193491

ABSTRACT

Aim: To explore whether the liquid-liquid phase separation- (LLPS-) related genes were potential prognostic markers that could contribute to the further classification of low-grade gliomas (LGGs). Methods: The LLPS-related genes were subjected to functional enrichment analysis. The univariable, least absolute shrinkage and selection operator, and multivariable stepwise Cox regression analyses were performed to develop an LLPS-related gene signature (GS) in the discovery data set. The biological characteristics of the high-risk LGG were explored using gene set enrichment analysis. Two independent external data sets were used to validate the LLPS-related GS. Results: LLPS-related genes are involved in multiple important cancer-related biological processes and pathways in LGG. Nine LLPS-related genes were identified to construct the LLPS-related GS, which was significantly associated with the prognosis of LGG patients. The LLPS-related GS could successfully divide patients with LGG into high- and low-risk groups, and the high-risk group showed a poorer prognosis than the low-risk group. Furthermore, the LLPS-related GS was independent of IDH and 1p19q status. Several cancer-related pathways may be more active in high-risk LGGs, such as IL6 JAK STAT3 signaling pathway. The LLPS-related GS was successfully validated with two independent external data sets. Conclusion: We developed and validated a novel LLPS-related GS for risk stratification of LGG. Our findings may provide more precise management for LGGs and a useful reference for LLPS mechanism to link LGG studies.


Subject(s)
Brain Neoplasms , Glioma , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioma/genetics , Glioma/metabolism , Humans , Interleukin-6 , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...