Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(21): 9446-9455, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748977

ABSTRACT

Biological pretreatment is a viable method for enhancing biogas production from straw crops, with the improvement in lignocellulose degradation efficiency being a crucial factor in this process. Herein, a metagenomic approach was used to screen core microorganisms (Bacillus subtilis, Acinetobacter johnsonii, Trichoderma viride, and Aspergillus niger) possessing lignocellulose-degrading abilities among samples from three environments: pile retting wheat straw (WS), WS returned to soil, and forest soil. Subsequently, synthetic microbial communities were constructed for fermentation-enzyme production. The crude enzyme solution obtained was used to pretreat WS and was compared with two commercial enzymes. The synthetic microbial community enzyme-producing pretreatment (SMCEP) yielded the highest enzymatic digestion efficacy for WS, yielding cellulose, hemicellulose, and lignin degradation rates of 39.85, 36.99, and 19.21%, respectively. Furthermore, pretreatment of WS with an enzyme solution, followed by anaerobic digestion achieved satisfactory results. SMCEP displayed the highest cumulative biogas production at 801.16 mL/g TS, which was 38.79% higher than that observed for WS, 22.15% higher than that of solid-state commercial enzyme pretreatment and 25.41% higher than that of liquid commercial enzyme pretreatment. These results indicate that enzyme-pretreated WS can significantly enhance biogas production. This study represents a solution to the environmental burden and energy use of crop residues.


Subject(s)
Biofuels , Triticum , Triticum/metabolism , Anaerobiosis , Fermentation , Lignin/metabolism
2.
Sci Total Environ ; 920: 171034, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369147

ABSTRACT

Straw is a typical biomass resource which can be converted into high nutritional value feed via microbial fermentation. The degradation and conversion of straw using a synthetic microbial community (SMC-8) was functionally investigated to characterise its nitrogen conversion and carbon metabolism. Four species of bacteria were found to utilise >20 % of the inorganic nitrogen within 15 h, and the ratio of the diameter of fungal transparent circles (D) to the diameter of the colony (d) of the four fungal species was >1. Solid-state fermentation of corn straw increased the total amino acid (AA) content by 41.69 %. The absolute digestibility of fermented corn straw dry weight (DW) and true protein was 34.34 % and 45.29 %, respectively. Comprehensive analysis of functional proteins revealed that Aspergillus niger, Trichoderma viride, Cladosporium cladosporioides, Bacillus subtilis and Acinetobacter johnsonii produce a complex enzyme system during corn straw fermentation, which plays a key role in the degradation of lignocellulose. This study provided a new insight in utilizing corn straw.


Subject(s)
Bacillus subtilis , Zea mays , Fermentation , Nitrogen , Animal Feed/analysis
3.
Bioresour Technol ; 389: 129799, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37774801

ABSTRACT

The efficient degradation of lignocellulose is a bottleneck for its integrated utilization. This research performed species analysis and made functional predictions in various ecosystems using multiomics coupling to construct a core synthetic microbial community with efficient lignocellulose degradation function. The synthetic microbial community was employed to degrade corn straw via solid-state fermentation. The degradation mechanisms were resolved using proteomics. The optimum culture conditions included 10% inoculum level (w/v), 4% nitrogen source ratio and a fermentation time of 23 d. Under these conditions, the degradation rates of cellulose, hemicellulose, and lignin were 34.91%, 45.94%, and 23.34%, respectively. Proteomic analysis revealed that lignin 1,4-ß-xylanase, ß-xylosidase and endo-1,4-ß-xylanase were closely related to lignocellulose degradation. The metabolic pathways involved in lignocellulose degradation and the functional roles of eight strains were obtained. The synthesis of a microbial community via multiomics linkage technology can effectively decompose lignocellulose, which is useful for their further utilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...