Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(16): 18682-18689, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35420024

ABSTRACT

Metastable cubic (Sn1-xPbx)Se with x ≥ 0.5 is expected to be a high mobility semiconductor due to its Dirac-like electronic state, but it has an excessively high carrier concentration of ∼1019 cm-3 and is not suitable for semiconductor device applications such as thin film transistors and solar cells. Further, thin films of (Sn1-xPbx)Se require a complicated synthesis process because of the high vapor pressure of Pb. We herein report the direct growth of metastable cubic (Sn1-xCax)Se films alloyed with CaSe, which has a wider bandgap and lower vapor pressure than PbSe. The cubic (Sn1-xCax)Se epitaxial films with x = 0.4-0.8 are stabilized on YSZ (111) single crystalline substrates by pulsed laser deposition. (Sn1-xCax)Se has a direct-transition-type bandgap, and the bandgap energy can be varied from 1.4 eV (x = 0.4) to 2.0 eV (x = 0.8) by changing x. These films with x = 0.4-0.6 show p-type conduction with low hole carrier concentrations of ∼1017 cm-3. Hall mobility analysis suggests that the hole transport would be dominated by 180° rotational domain structures, which is specific to (111) oriented epitaxial films. However, it, in turn, clarifies that the in-grain carrier mobility in the (Sn0.6Ca0.4)Se film is as high as 322 cm2/(Vs), which is much higher than those in thermodynamically stable layered SnSe and other Sn-based layered semiconductor films at room temperature. Therefore, the present results prove the potential of high mobility (Sn1-xCax)Se films for semiconductor device applications via a simple thin-film deposition process.

2.
Materials (Basel) ; 8(12): 8097-8105, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-28793700

ABSTRACT

In this study, a novel biocompatible hydroxyapatite (HA) was synthesized by using chitosan oligosaccharide (COS) as a template. These HA samples were studied by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The biocompatibility of HA samples was evaluated via cell viability, cell morphology and alkaline phosphatase staining of MG-63 cell lines. The results show that HA synthesized in the presence of COS was favorable to proliferation and osteogenic differentiation of MG-63 cells. These hydroxyapatites are potentially attractive biomaterials for bone tissue engineering applications.

3.
J Mater Chem B ; 3(1): 34-38, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-32261921

ABSTRACT

For the first time we observed well-resolved Ca(i) and Ca(ii) signal changes in fluorohydroxyapatites with different fluorine contents by solid state NMR. The experiment results show that fluorine ions perturb the chemical environment of Ca(ii) ions and OH- ions more than phosphorus tetrahedra and Ca(i) ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...