Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 418
Filter
1.
AMIA Jt Summits Transl Sci Proc ; 2024: 449-458, 2024.
Article in English | MEDLINE | ID: mdl-38827100

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disease with many identifying biomarkers for diagnosis. However, whole-brain phenomena, particularly in functional MRI modalities, are not fully understood nor characterized. Here we employ the novel application of topological data analysis (TDA)-based methods of persistent homology to functional brain networks from ADNI-3 cohort to perform a subtyping experiment using unsupervised clustering techniques. We then investigate variations in QT-PAD challenge features across the identified clusters. Using a Wasserstein distance kernel with a variety of clustering algorithms, we found that the 0th-homology Wasserstein distance kernel and spectral clustering yielded clusters with significant differences in whole brain and medial temporal lobe (MTL) volume, thus demonstrating an intrinsic link between whole brain functional topology and brain morphometric structure. These findings demonstrate the importance of MTL in functional connectivity and the efficacy of using TDA-based machine learning methods in network neuroscience and neurodegenerative disease subtyping.

2.
Mol Cancer ; 23(1): 109, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769556

ABSTRACT

Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.


Subject(s)
Breast Neoplasms , Histone Demethylases , Molecular Targeted Therapy , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Histone Demethylases/genetics , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/genetics , Biomarkers, Tumor
3.
Biomolecules ; 14(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38785979

ABSTRACT

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Subject(s)
Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/enzymology , Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Ubiquitination , Inflammation/metabolism , Signal Transduction , Ubiquitin/metabolism
4.
Eur J Pharm Biopharm ; : 114327, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759900

ABSTRACT

P-glycoprotein (P-gp) overexpressed mutidrug resistance (MDR) is currently a key factor limiting the effectiveness of breast cancer chemotherapy. Systemic administration based on P-gp-associated mechanism leads to severe toxic side effects. Here, we designed a T7 peptide-modified mixed liposome (T7-MLP@DTX/SchB) that, by active targeting co-delivering chemotherapeutic agents and P-gp inhibitors, harnessed synergistic effects to improve the treatment of MDR breast cancer. This study established drug-resistant cell models and animal models. Subsequently, comprehensive evaluations involving cell uptake, cell apoptosis, cellular toxicity assays, in vivo tumor-targeting capability, and anti-tumor activity assays were conducted to assess the drug resistance reversal effects of T7-MLP@DTX/SchB. Additionally, a systematic assessment of the biosafety profile of T7-MLP@DTX/SchB was executed, including blood profiles, biochemical markers, and histopathological examination. It was found that this co-delivery strategy successfully exerted the synergistic effects, since there was a significant tumor growth inhibitory effect on multidrug-resistant breast cancer. Targeted modification with T7 peptide enhanced the therapeutic efficacy remarkably, while vastly ameliorating the biocompatibility compared to free drugs. The intriguing results supported the promising potential use of T7-MLP@DTX/SchB in overcoming MDR breast cancer treatment.

5.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766268

ABSTRACT

Recent advances in cytometry technology have enabled high-throughput data collection with multiple single-cell protein expression measurements. The significant biological and technical variance between samples in cytometry has long posed a formidable challenge during the gating process, especially for the initial gates which deal with unpredictable events, such as debris and technical artifacts. Even with the same experimental machine and protocol, the target population, as well as the cell population that needs to be excluded, may vary across different measurements. To address this challenge and mitigate the labor-intensive manual gating process, we propose a deep learning framework UNITO to rigorously identify the hierarchical cytometric subpopulations. The UNITO framework transformed a cell-level classification task into an image-based semantic segmentation problem. For reproducibility purposes, the framework was applied to three independent cohorts and successfully detected initial gates that were required to identify single cellular events as well as subsequent cell gates. We validated the UNITO framework by comparing its results with previous automated methods and the consensus of at least four experienced immunologists. UNITO outperformed existing automated methods and differed from human consensus by no more than each individual human. Most critically, UNITO framework functions as a fully automated pipeline after training and does not require human hints or prior knowledge. Unlike existing multi-channel classification or clustering pipelines, UNITO can reproduce a similar contour compared to manual gating for each intermediate gating to achieve better interpretability and provide post hoc visual inspection. Beyond acting as a pioneering framework that uses image segmentation to do auto-gating, UNITO gives a fast and interpretable way to assign the cell subtype membership, and the speed of UNITO will not be impacted by the number of cells from each sample. The pre-gating and gating inference takes approximately 2 minutes for each sample using our pre-defined 9 gates system, and it can also adapt to any sequential prediction with different configurations.

6.
Comput Biol Med ; 177: 108666, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38820773

ABSTRACT

BACKGROUND: α-1,3-mannosyltransferase (ALG3) holds significance as a key member within the mannosyltransferase family. Nevertheless, the exact function of ALG3 in cancer remains ambiguous. Consequently, the current research aimed to examine the function and potential mechanisms of ALG3 in various types of cancer. METHODS: Deep pan-cancer analyses were conducted to investigate the expression patterns, prognostic value, genetic variations, single-cell omics, immunology, and drug responses associated with ALG3. Subsequently, in vitro experiments were executed to ascertain the biological role of ALG3 in breast cancer. Moreover, the link between ALG3 and CD8+ T cells was verified using immunofluorescence. Lastly, the association between ALG3 and chemokines was assessed using qRT-PCR and ELISA. RESULTS: Deep pan-cancer analysis demonstrated a heightened expression of ALG3 in the majority of tumors based on multi-omics evidence. ALG3 emerges as a diagnostic and prognostic biomarker across diverse cancer types. In addition, ALG3 participates in regulating the tumor immune microenvironment. Elevated levels of ALG3 were closely linked to the infiltration of bone marrow-derived suppressor cells (MDSC) and CD8+ T cells. According to in vitro experiments, ALG3 promotes proliferation and migration of breast cancer cells. Moreover, ALG3 inhibited CD8+ T cell infiltration by suppressing chemokine secretion. Finally, the inhibition of ALG3 enhanced the responsiveness of breast cancer cells to 5-fluorouracil treatment. CONCLUSION: ALG3 shows potential as both a prognostic indicator and immune infiltration biomarker across various types of cancer. Inhibition of ALG3 may represent a promising therapeutic strategy for tumor treatment.

7.
Curr Biol ; 34(7): R275-R278, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38593770

ABSTRACT

Collective cell migration is a key cellular process in development and disease. A new study reports that ER stress is induced during collective cell migration and an intrinsic mechanism prevents migratory cells from over-reacting to ER stress.


Subject(s)
Cell Movement
8.
NPJ Biofilms Microbiomes ; 10(1): 40, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605016

ABSTRACT

Increasing evidence infers that some complex diseases are attributed to co-infection with multiple pathogens, such as shrimp white feces syndrome (WFS); however, there is a lack of experimental evidence to validate such causal link. This deficiency further impedes rational design of probiotics to elicit desired benefits to shrimp WFS resistance. Herein, we validated the causal roles of Vibrio fluvialis, V. coralliilyticus and V. tubiashii (in a ratio of 7:2:1) in shrimp WFS etiology, which fully satisfied Koch's postulates. Correspondingly, we precisely designed four antagonistic strains: Ruegeria lacuscaerulensis, Nioella nitratireducens, Bacillus subtilis and Streptomyces euryhalinus in a ratio of 4:3:2:1, which efficiently guarded against WFS. Dietary supplementation of the probiotics stimulated beneficial gut populations, streptomycin, short chain fatty acids, taurine metabolism potentials, network stability, tight junction, and host selection, while reducing turnover rate and average variation degree of gut microbiota, thereby facilitating ecological and mechanical barriers against pathogens. Additionally, shrimp immune pathways, such as Fcγ R-mediated phagocytosis, Toll-like receptor and RIG-I-like receptor signaling pathways conferring immune barrier, were activated by probiotics supplementation. Collectively, we establish an updated framework for precisely validating co-infection with multiple pathogens and rationally designing antagonistic probiotics. Furthermore, our findings uncover the underlying beneficial mechanisms of designed probiotics from the probiotics-gut microbiome-host immunity axis.


Subject(s)
Coinfection , Gastrointestinal Microbiome , Probiotics , Humans , Feces
9.
Bioorg Chem ; 147: 107400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688196

ABSTRACT

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Subject(s)
Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Structure
10.
Fish Shellfish Immunol ; 149: 109531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604479

ABSTRACT

In this study, we present the first cloning and identification of perforin (MsPRF1) in largemouth bass (Micropterus salmoides). The full-length cDNA of MsPRF1 spans 1572 base pairs, encoding a 58.88 kDa protein consisting of 523 amino acids. Notably, the protein contains MACPF and C2 structural domains. To evaluate the expression levels of MsPRF1 in various healthy largemouth bass tissues, real-time quantitative PCR was employed, revealing the highest expression in the liver and gut. After the largemouth bass were infected by Nocardia seriolae, the mRNA levels of MsPRF1 generally increased within 48 h. Remarkably, the recombinant protein MsPRF1 exhibits inhibitory effects against both Gram-negative and Gram-positive bacteria. Additionally, the largemouth bass showed a higher survival rate in the N. seriolae challenge following the intraperitoneal injection of rMsPRF1, with observed reductions in the tissue bacterial loads. Moreover, rMsPRF1 demonstrated a significant impact on the phagocytic and bactericidal activities of largemouth bass MO/MΦ cells, concurrently upregulating the expression of pro-inflammatory factors. These results demonstrate that MsPRF1 has a potential role in the immune response of largemouth bass against N. seriolae infection.


Subject(s)
Amino Acid Sequence , Bass , Fish Diseases , Fish Proteins , Nocardia , Perforin , Phylogeny , Animals , Bass/immunology , Bass/genetics , Fish Diseases/immunology , Perforin/genetics , Perforin/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Nocardia/immunology , Nocardia Infections/veterinary , Nocardia Infections/immunology , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Immunity, Innate/genetics , Gene Expression Profiling/veterinary , Base Sequence
11.
Microorganisms ; 12(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38543573

ABSTRACT

Glugea plecoglossi is an obligate intracellular microsporidium, which poses a significant threat to ayu (Plecoglossus altivelis). In vitro cultivation models are invaluable tools for investigating intracellular microorganisms, including G. plecoglossil. In this study, we attempted to in vitro cultivate G. plecoglossi using primary cultures derived from ayu monocytes/macrophages (MO/MΦ), a murine-derived macrophage cell line RAW264.7, and the epithelioma papulosum cyprini (EPC) cell line. The results demonstrated that MO/MΦ infected with spores exhibited a pronounced immune response which was presented by rapidly high expression levels of inflammatory cytokines, such as PaIL-1ß, PaTNF-α, PaIL-10, and PaTGF-ß, and detached within 96 h post-infection (hpi). Infected RAW264.7 cells remained capable of stable passage yet exhibited cellular deformation with a decrease in intracellular spores occurring around 8 days post-infection (dpi). In contrast, EPC cells promised a substantial parasite population, and the cytokine expression levels returned to normal by 8 dpi. In addition, G. plecoglossi spores recovered from EPC cells could infect young ayu, suggesting that EPC cells might be used as an in vitro cultivation system for G. plecoglossi.

12.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443798

ABSTRACT

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Subject(s)
Drug Discovery , Epigenesis, Genetic , Homeostasis , RNA , RNA, Messenger
13.
BMC Cancer ; 24(1): 253, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395798

ABSTRACT

BACKGROUND: Cancer cachexia is associated with impaired functional and nutritional status and worse clinical outcomes. Global Leadership Initiative in Malnutrition (GLIM) consensus recommended the application of GLIM criteria to diagnose malnutrition in patients with cachexia. However, few previous study has applied the GLIM criteria in patients with cancer cachexia. METHODS: From July 2014 to May 2019, patients who were diagnosed with cancer cachexia and underwent radical gastrectomy for gastric cancer were included in this study. Malnutrition was diagnosed using the GLIM criteria. Skeletal muscle index was measured using abdominal computed tomography (CT) images at the third lumbar vertebra (L3) level. Hand-grip strength and 6-meters gait speed were measured before surgery. RESULTS: A total of 356 patients with cancer cachexia were included in the present study, in which 269 (75.56%) were identified as having malnutrition based on the GLIM criteria. GLIM-defined malnutrition alone did not show significant association with short-term postoperative outcomes, including complications, costs or length of postoperative hospital stays. The combination of low hand-grip strength or low gait speed with GLIM-defined malnutrition led to a significant predictive value for these outcomes. Moreover, low hand-grip strength plus GLIM-defined malnutrition was independently associated with postoperative complications (OR 1.912, 95% CI 1.151-3.178, P = 0.012). GLIM-defined malnutrition was an independent predictive factor for worse OS (HR 2.310, 95% CI 1.421-3.754, P = 0.001) and DFS (HR 1.815, 95% CI 1.186-2.779, P = 0.006) after surgery. The addition of low hand-grip strength or low gait speed to GLIM-defined malnutrition did not increase its predictive value for survival. CONCLUSION: GLIM-defined malnutrition predicted worse long-term survival in gastric cancer patients with cachexia. Gait speed and hand-grip strength added prognostic value to GLIM-defined malnutrition for the prediction of short-term postoperative outcomes, which could be incorporated into preoperative assessment protocols in patients with cancer cachexia.


Subject(s)
Malnutrition , Stomach Neoplasms , Humans , Cachexia/diagnosis , Cachexia/etiology , Prognosis , Stomach Neoplasms/complications , Stomach Neoplasms/surgery , Leadership , Walking Speed , Malnutrition/complications , Malnutrition/diagnosis , Nutritional Status , Hand Strength , Nutrition Assessment
14.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370767

ABSTRACT

Single-cell technologies have emerged as a transformative technology enabling high-dimensional characterization of cell populations at an unprecedented scale. The data's innate complexity and voluminous nature pose significant computational and analytical challenges, especially in comparative studies delineating cellular architectures across various biological conditions (i.e., generation of sample level distance matrices). Optimal Transport (OT) is a mathematical tool that captures the intrinsic structure of data geometrically and has been applied to many bioinformatics tasks. In this paper, we propose QOT (Quantized Optimal Transport), a new method enables efficient computation of sample level distance matrix from large-scale single-cell omics data through a quantization step. We apply our algorithm to real-world single-cell genomics and pathomics datasets, aiming to extrapolate cell-level insights to inform sample level categorizations. Our empirical study shows that QOT outperforms OT-based algorithms in terms of accuracy and robustness when obtaining a distance matrix at the sample level from high throughput single-cell measures. Moreover, the sample level distance matrix could be used in downstream analysis (i.e. uncover the trajectory of disease progression), highlighting its usage in biomedical informatics and data science.

15.
Nat Commun ; 15(1): 354, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191573

ABSTRACT

Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.


Subject(s)
Alzheimer Disease , Neuroimaging , Humans , Endophenotypes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Cluster Analysis
16.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199264

ABSTRACT

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Subject(s)
Bass , Fish Diseases , Rhabdoviridae , Animals , Saccharomyces cerevisiae , Vaccination , Fungal Proteins , Vaccines, Synthetic
17.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 323-330, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37490104

ABSTRACT

PURPOSE: We aimed to explore the effects of the ciliary sulcus angle (CSA) on accurate prediction of the vault after phakic implantable collamer lens (EVO ICL Model V4c) using the KS formula. METHODS: Patients were classified according to the size of CSA: group A, narrow angle (CSA < 30°); group B, normal angle (CSA = 30-90°); and group C, wide angle (CSA > 90°). Further, differences between the actual vault dimensions at 3 months postoperatively and the preoperatively predicted vault dimensions in the three groups were analyzed. RESULTS: This study included 223 eyes of 223 individuals. In groups A-C, the difference in the preoperative vault dimensions of the three groups predicted with the KS formula was not statistically significant (P = 0.056). The actual vault dimensions at 3 months postoperatively were significantly different between the three groups (P < 0.001). Moreover, the difference between the actual and predicted vaults by the KS formula was statistically significant (P < 0.001). In the 3 months, after surgery, the percentages of patients with a low vault (< 250 µm) were 0%, 3%, and 29% in groups A, B, and C, respectively. Further, the percentages of patients with an ideal vault (250-750 µm) in the postoperative period were 66%, 84%, and 71% in groups A, B, and C, respectively. Finally, the percentages of patients with a high vault (> 750 µm) in the postoperative period were 34%, 13%, and 0% in groups A, B, and C, respectively. Notably, the distribution of the vault among the three groups was statistically significant (P < 0.001). CONCLUSION: The size of CSA significantly affects the predictiveness of the vault by the KS formula, with the most pronounced effect on the angles < 30° and > 90°. Therefore, CSA should be considered when selecting the lens size using the KS formula preoperatively. CLINICAL TRIAL REGISTRATION NUMBER: ChiCTR2200065501.


Subject(s)
Lens, Crystalline , Phakic Intraocular Lenses , Humans , Lens Implantation, Intraocular/methods , Visual Acuity , Eye , Retrospective Studies
18.
Fish Shellfish Immunol ; 144: 109284, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092092

ABSTRACT

Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.


Subject(s)
Bass , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Immunologic Factors/metabolism , Power, Psychological , Fish Diseases/prevention & control
19.
Osteoarthritis Cartilage ; 32(1): 66-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37802465

ABSTRACT

OBJECTIVE: This study aimed to explore the specific function of M2 macrophages in intervertebral disc degeneration (IDD). METHODS: Intervertebral disc (IVD) samples from normal (n = 4) and IDD (n = 6) patients were collected, and the expression of M2-polarized macrophage marker, CD206, was investigated using immunohistochemical staining. Nucleus pulposus cells (NPCs) in a TNF-α environment were obtained, and a mouse caudal IVD puncture model was established. Mice with Rheb deletions, specifically in the myeloid lineage, were generated and subjected to surgery-induced IDD. IDD-induced damage and cell apoptosis were measured using histological scoring, X-ray imaging, immunohistochemical staining, and TdT-mediated dUTP nick end labeling (TUNEL) assay. Finally, mice and NPCs were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in IDD. RESULTS: Accumulation of CD206 in human and mouse IDD tissues was detected. Rheb deletion in the myeloid lineage (RheBcKO) increased the number of CD206+ M2-like macrophages (mean difference 18.6% [15.7-21.6%], P < 0.001), decreased cell apoptosis (mean difference -15.6% [-8.9 to 22.2%], P = 0.001) and attenuated the IDD process in the mouse IDD model. NPCs treated with Rspo2 displayed increased extracellular matrix catabolism and apoptosis; co-culture with a conditioned medium derived from RheBcKO mice inhibited these changes. Anti-Rspo2 treatment in the mouse caudal IVD puncture model exerted protective effects against IDD. CONCLUSIONS: Promoting CD206+ M2-like macrophages could reduce Rspo2 secretion, thereby alleviating experimental IDD. Rheb deletion may help M2-polarized macrophages accumulate and attenuate experimental IDD partially by inhibiting Rspo2 production. Hence, M2-polarized macrophages and Rspo2 may serve as therapeutic targets for IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Mice , Animals , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/metabolism , Nucleus Pulposus/metabolism , Apoptosis , Disease Models, Animal , Macrophages/metabolism
20.
Life Sci ; 336: 122310, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38013140

ABSTRACT

AIMS: Qipian® is a commercialized agent composed of extracts of three genera of commensal bacteria, and its mechanism of action on asthma is unclear. This study aimed to examine the impact of Qipian® on airway inflammation and investigate the underlying mechanisms. MATERIALS AND METHODS: Qipian® or dexamethasone (DEX) was administered before OVA challenge in an ovalbumin-induced asthma mouse model, and then asthmatic symptoms were observed and scored. Samples of lung tissues, blood, and bronchoalveolar lavage fluid (BALF) were collected, and eosinophils (Eos), immunoglobins (Igs), and type 1 T helper (Th1)/Th2 cell cytokines were measured. Mucus production in the lung was assessed by periodic acid-Schiff (PAS) staining. The effects of Qipian® on dendritic and T regulatory (Treg) cells were investigated using flow cytometry. KEY FINDINGS: The short-term administration of Qipian® significantly inhibited the cardinal features of allergic asthma, including an elevated asthmatic behaviour score, airway inflammation and immune response. Histological analysis of the lungs showed that Qipian® attenuated airway inflammatory cell infiltration and mucus hyperproduction. Qipian® restored Th1/Th2 imbalance by decreasing interleukin (IL)-4, IL-5, and IL-13 while increasing interferon (IFN)-γ and IL-10. Further investigation revealed that Qipian® treatment induced the upregulation of CD4+CD25+Foxp3+ Treg cells and CD103+ DCs and downregulation of tachykinins neurokinin A (NKA) and NKB in the lung. SIGNIFICANCE: Our findings suggested that short-term treatment with Qipian® could alleviate inflammation in allergic asthma through restoring the Th1/Th2 balance by recruiting Treg cells to airways and inducing the proliferation of CD103+ DCs, which actually provides a new treatment option for asthma.


Subject(s)
Asthma , Bacterial Lysates , Animals , Mice , Ovalbumin , Asthma/metabolism , Lung/pathology , Inflammation/drug therapy , Inflammation/pathology , Cytokines , Bronchoalveolar Lavage Fluid , Immunity , Bacteria , Mice, Inbred BALB C , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...