Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26415129

ABSTRACT

Intravascular ultrasound (IVUS) provides radiation-free, real-time imaging and assessment of atherosclerotic disease in terms of anatomical, functional, and molecular composition. The primary clinical applications of IVUS imaging include assessment of luminal plaque volume and real-time image guidance for stent placement. When paired with microbubble contrast agents, IVUS technology may be extended to provide nonlinear imaging, molecular imaging, and therapeutic delivery modes. In this review, we discuss the development of emerging imaging and therapeutic applications that are enabled by the combination of IVUS imaging technology and microbubble contrast agents.


Subject(s)
Drug Delivery Systems/methods , Microbubbles , Ultrasonography, Interventional/methods , Animals , Carotid Arteries/diagnostic imaging , Humans , Rabbits , Swine
2.
Biomed Microdevices ; 17(1): 23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25663444

ABSTRACT

Microfluidics-based production of stable microbubbles for ultrasound contrast enhancement or drug/gene delivery allows for precise control over microbubble diameter but at the cost of a low production rate. In situ microfluidic production of microbubbles directly in the vasculature may eliminate the necessity for high microbubble production rates, long stability, or small diameters. Towards this goal, we investigated whether microfluidic-produced microbubbles directly administered into a mouse tail vein could provide sufficient ultrasound contrast. Microbubbles composed of nitrogen gas and stabilized with 3 % bovine serum albumin and 10 % dextrose were injected for 10 seconds into wild type C57BL/6 mice, via a tail-vein catheter. Short-axis images of the right and left ventricle were acquired at 12.5 MHz and image intensity over time was analyzed. Microbubbles were produced on the order of 10(5) microbubbles/s and were observed in both the right and left ventricles. The median rise time, duration, and decay time within the right ventricle were 2.9, 21.3, and 14.3 s, respectively. All mice survived the procedure with no observable respiratory or heart rate distress despite microbubble diameters as large as 19 µm.


Subject(s)
Contrast Media , Microbubbles , Microfluidic Analytical Techniques/methods , Ultrasonography/methods , Animals , Cattle , Contrast Media/chemistry , Contrast Media/pharmacology , Mice , Nitrogen/chemistry , Nitrogen/pharmacology , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacology
3.
Ultrasound Med Biol ; 40(2): 400-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24342914

ABSTRACT

We describe a method for synthesizing albumin-shelled, large-diameter (>10 µm), transiently stable microbubbles using a flow-focusing microfluidic device (FFMD). The microfluidic device enables microbubbles to be produced immediately before insonation, thus relaxing the requirements for stability. Both reconstituted fractionated bovine serum albumin (BSA) and fresh bovine blood plasma were investigated as shell stabilizers. Microbubble coalescence was inhibited by the addition of either dextrose or glycerol and propylene glycol. Microbubbles were observed to have an acoustic half-life of approximately 6 s. Microbubbles generated directly within a vessel phantom containing flowing blood produced a 6.5-dB increase in acoustic signal within the lumen. Microbubbles generated in real time upstream of in vitro rat aortic smooth muscle cells under physiologic flow conditions successfully permeabilized 58% of the cells on insonation at a peak negative pressure of 200 kPa. These results indicate that transiently stable microbubbles produced via flow-focusing microfluidic devices are capable of image enhancement and drug delivery. In addition, successful microbubble production with blood plasma suggests the potential to use blood as a stabilizing shell.


Subject(s)
Contrast Media/chemical synthesis , Microbubbles , Microfluidic Analytical Techniques/instrumentation , Muscle, Smooth, Vascular/diagnostic imaging , Myocytes, Smooth Muscle/diagnostic imaging , Serum Albumin/chemistry , Ultrasonography/instrumentation , Animals , Cells, Cultured , Coated Materials, Biocompatible/chemical synthesis , Drug Compounding/instrumentation , Drug Stability , Equipment Design , Equipment Failure Analysis , Phantoms, Imaging , Rats
4.
Ultrasound Med Biol ; 39(7): 1267-76, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23643062

ABSTRACT

Focal drug delivery to a vessel wall facilitated by intravascular ultrasound and microbubbles holds promise as a potential therapy for atherosclerosis. Conventional methods of microbubble administration result in rapid clearance from the bloodstream and significant drug loss. To address these limitations, we evaluated whether drug delivery could be achieved with transiently stable microbubbles produced in real time and in close proximity to the therapeutic site. Rat aortic smooth muscle cells were placed in a flow chamber designed to simulate physiological flow conditions. A flow-focusing microfluidic device produced 8 µm diameter monodisperse microbubbles within the flow chamber, and ultrasound was applied to enhance uptake of a surrogate drug (calcein). Acoustic pressures up to 300 kPa and flow rates up to 18 mL/s were investigated. Microbubbles generated by the flow-focusing microfluidic device were stabilized with a polyethylene glycol-40 stearate shell and had either a perfluorobutane (PFB) or nitrogen gas core. The gas core composition affected stability, with PFB and nitrogen microbubbles exhibiting half-lives of 40.7 and 18.2 s, respectively. Calcein uptake was observed at lower acoustic pressures with nitrogen microbubbles (100 kPa) than with PFB microbubbles (200 kPa) (p < 0.05, n > 3). In addition, delivery was observed at all flow rates, with maximal delivery (>70% of cells) occurring at a flow rate of 9 mL/s. These results demonstrate the potential of transiently stable microbubbles produced in real time and in close proximity to the intended therapeutic site for enhancing localized drug delivery.


Subject(s)
Drug Delivery Systems/instrumentation , Fluoresceins/pharmacokinetics , Microbubbles/therapeutic use , Microfluidic Analytical Techniques/instrumentation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/radiation effects , Sonication/instrumentation , Animals , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Rats
5.
Microfluid Nanofluidics ; 14(3-4): 457-467, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23439786

ABSTRACT

Current microbubble-based ultrasound contrast agents are administered intravenously resulting in large losses of contrast agent, systemic distribution, and strict requirements for microbubble longevity and diameter size. Instead we propose in situ production of microbubbles directly within the vasculature to avoid these limitations. Flow focusing microfluidic devices (FFMDs) are a promising technology for enabling in situ production as they can produce microbubbles with precisely controlled diameters in real-time. While the microfluidic chips are small, the addition of inlets and interconnects to supply the gas and liquid phase greatly increases the footprint of these devices preventing the miniaturization of FFMDs to sizes compatible with medium and small vessels. To overcome this challenge, we introduce a new method for supplying the liquid (shell) phase to an FFMD that eliminates bulky interconnects. A pressurized liquid-filled chamber is coupled to the liquid inlets of an FFMD, which we term a flooded FFMD. The microbubble diameter and production rate of flooded FFMDs were measured optically over a range of gas pressures and liquid flow rates. The smallest FFMD manufactured measured 14.5 × 2.8 × 2.3 mm. A minimum microbubble diameter of 8.1 ± 0.3 µm was achieved at a production rate of 450,000 microbubbles/s (MB/s). This represents a significant improvement with respect to any previously reported result. The flooded design also simplifies parallelization and production rates of up to 670,000 MB/s were achieved using a parallelized version of the flooded FFMD. In addition, an intravascular ultrasound (IVUS) catheter was coupled to the flooded FFMD to produce an integrated ultrasound contrast imaging device. B-mode and IVUS images of microbubbles produced from a flooded FFMD in a gelatin phantom vessel were acquired to demonstrate the potential of in situ microbubble production and real-time imaging. Microbubble production rates of 222,000 MB/s from a flooded FFMD within the vessel lumen provided a 23 dB increase in B-mode contrast. Overall, the flooded design is a critical contribution towards the long- term goal of utilizing in situ produced microbubbles for contrast enhanced ultrasound imaging of, and drug delivery to, the vasculature.

6.
Biomicrofluidics ; 7(1): 14103, 2013.
Article in English | MEDLINE | ID: mdl-24403995

ABSTRACT

Flow-focusing microfluidic devices (FFMDs) can produce microbubbles (MBs) with precisely controlled diameters and a narrow size distribution. In this paper, poly-dimethyl-siloxane based, rectangular-nozzle, two-dimensional (2-D) planar, expanding-nozzle FFMDs were characterized using a high speed camera to determine the production rate and diameter of Tween 20 (2% v/v) stabilized MBs. The effect of gas pressure and liquid flow rate on MB production rate and diameter was analyzed in order to develop a relationship between FFMD input parameters and MB production. MB generation was observed to transition through five regimes at a constant gas pressure and increasing liquid flow rate. Each MB generation event (i.e., break-off to break-off) was further separated into two characteristic phases: bubbling and waiting. The duration of the bubbling phase was linearly related to the liquid flow rate, while the duration of the waiting phase was related to both liquid flow rate and gas pressure. The MB production rate was found to be inversely proportional to the sum of the bubbling and waiting times, while the diameter was found to be proportional to the product of the gas pressure and bubbling time.

SELECTION OF CITATIONS
SEARCH DETAIL
...