Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 20(2): 870-8, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22274433

ABSTRACT

We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincar sphere, which we term a generalized polarization state, that is preserved. Changes to the generalized polarization state can then be used in place of the absolute polarization states that make up the generalized state, to measure the change in polarization due to a sample under investigation. We illustrate the usefulness of this analysis approach by demonstrating fiber-based ellipsometry, where the polarization state of the probe light is unknown, and, yet, the ellipsometric angles of the investigated sample (Ψ and Δ) are obtained with an accuracy comparable to that of conventional ellipsometry instruments by measuring changes to the generalized polarization state.


Subject(s)
Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Lasers, Gas , Light , Models, Theoretical , Birefringence , Carbon , Equipment Design , Fiber Optic Technology/standards , Neon , Optical Fibers , Reproducibility of Results
2.
Opt Express ; 17(19): 16969-79, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19770915

ABSTRACT

In this paper, we detect and characterize the carbon contamination layers that are formed during the illumination of extreme ultraviolet (EUV) multilayer mirrors. The EUV induced carbon layers were characterized ex situ using spectroscopic ellipsometry (SE) and laser generated surface acoustic waves (LG-SAW). We show that both LG-SAW and SE are very sensitive for measuring carbon layers, even in the presence of the highly heterogeneous structure of the multilayer. SE has better overall sensitivity, with a detection limit of 0.2 nm, while LG-SAW has an estimated detection limit of 2 nm. In addition, SE reveals that the optical properties of the EUV induced carbon contamination layer are consistent with the presence of a hydrogenated, polymeric like carbon. On the other hand, LG-SAW reveals that the EUV induced carbon contamination layer has a low Young's modulus (<100 GPa), which means that the layer is mechanically soft. We compare the limits of detection and quantification of the two techniques and discuss their prospective for monitoring carbon contamination build up on EUV optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...