Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 20(3): 361-372, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34799403

ABSTRACT

Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myelogenous leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared with other lineages. This result was striking in comparison with data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes, including MYC, a well-established target of BRG1 activity in AML. Overall, small-molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. IMPLICATIONS: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.


Subject(s)
Adenosine Triphosphatases , Leukemia, Myeloid, Acute , Adenosine Triphosphatases/genetics , Animals , Carcinogenesis , Chromatin Assembly and Disassembly , DNA Helicases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mammals/genetics , Mammals/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Sci Rep ; 11(1): 1399, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446805

ABSTRACT

SHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression. Knockout of SHP2 using CRISPR/Cas9 gene editing showed that targeting SHP2 in cancer cells contributes to this immune response. Inhibition of SHP2 activity augmented tumor intrinsic IFNγ signaling resulting in enhanced chemoattractant cytokine release and cytotoxic T cell recruitment, as well as increased expression of MHC Class I and PD-L1 on the cancer cell surface. Furthermore, SHP2 inhibition diminished the differentiation and inhibitory function of immune suppressive myeloid cells in the tumor microenvironment. SHP2 inhibition enhanced responses to anti-PD-1 blockade in syngeneic mouse models. Overall, our study reveals novel functions of SHP2 in tumor immunity and proposes that targeting SHP2 is a promising strategy for cancer immunotherapy.


Subject(s)
Immunity, Cellular , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Gene Knockout Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction/genetics
3.
Mol Cancer Ther ; 19(10): 2186-2195, 2020 10.
Article in English | MEDLINE | ID: mdl-32747420

ABSTRACT

Uveal melanoma is a rare and aggressive cancer that originates in the eye. Currently, there are no approved targeted therapies and very few effective treatments for this cancer. Although activating mutations in the G protein alpha subunits, GNAQ and GNA11, are key genetic drivers of the disease, few additional drug targets have been identified. Recently, studies have identified context-specific roles for the mammalian SWI/SNF chromatin remodeling complexes (also known as BAF/PBAF) in various cancer lineages. Here, we find evidence that the SWI/SNF complex is essential through analysis of functional genomics screens and further validation in a panel of uveal melanoma cell lines using both genetic tools and small-molecule inhibitors of SWI/SNF. In addition, we describe a functional relationship between the SWI/SNF complex and the melanocyte lineage-specific transcription factor Microphthalmia-associated Transcription Factor, suggesting that these two factors cooperate to drive a transcriptional program essential for uveal melanoma cell survival. These studies highlight a critical role for SWI/SNF in uveal melanoma, and demonstrate a novel path toward the treatment of this cancer.


Subject(s)
Chromatin/metabolism , Melanoma/genetics , Uveal Neoplasms/genetics , Animals , Cell Line, Tumor , Chromosomal Proteins, Non-Histone , Humans , Mice , Transcription Factors
4.
Nat Med ; 25(1): 95-102, 2019 01.
Article in English | MEDLINE | ID: mdl-30559422

ABSTRACT

Interferons (IFNs) are cytokines that play a critical role in limiting infectious and malignant diseases 1-4 . Emerging data suggest that the strength and duration of IFN signaling can differentially impact cancer therapies, including immune checkpoint blockade 5-7 . Here, we characterize the output of IFN signaling, specifically IFN-stimulated gene (ISG) signatures, in primary tumors from The Cancer Genome Atlas. While immune infiltration correlates with the ISG signature in some primary tumors, the existence of ISG signature-positive tumors without evident infiltration of IFN-producing immune cells suggests that cancer cells per se can be a source of IFN production. Consistent with this hypothesis, analysis of patient-derived tumor xenografts propagated in immune-deficient mice shows evidence of ISG-positive tumors that correlates with expression of human type I and III IFNs derived from the cancer cells. Mechanistic studies using cell line models from the Cancer Cell Line Encyclopedia that harbor ISG signatures demonstrate that this is a by-product of a STING-dependent pathway resulting in chronic tumor-derived IFN production. This imposes a transcriptional state on the tumor, poising it to respond to the aberrant accumulation of double-stranded RNA (dsRNA) due to increased sensor levels (MDA5, RIG-I and PKR). By interrogating our functional short-hairpin RNA screen dataset across 398 cancer cell lines, we show that this ISG transcriptional state creates a novel genetic vulnerability. ISG signature-positive cancer cells are sensitive to the loss of ADAR, a dsRNA-editing enzyme that is also an ISG. A genome-wide CRISPR genetic suppressor screen reveals that the entire type I IFN pathway and the dsRNA-activated kinase, PKR, are required for the lethality induced by ADAR depletion. Therefore, tumor-derived IFN resulting in chronic signaling creates a cellular state primed to respond to dsRNA accumulation, rendering ISG-positive tumors susceptible to ADAR loss.


Subject(s)
Adenosine Deaminase/metabolism , Interferons/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Line, Tumor , Gene Expression Profiling , Humans , Membrane Proteins/metabolism , Mice, Nude , RNA, Small Interfering/metabolism , Signal Transduction , Suppression, Genetic , Xenograft Model Antitumor Assays
5.
Pract Radiat Oncol ; 5(5): e531-e536, 2015.
Article in English | MEDLINE | ID: mdl-25858770

ABSTRACT

PURPOSE: To evaluate patterns and predictors of local failure in patients undergoing postoperative radiation therapy (RT) for osseous metastases. METHODS AND MATERIALS: Patients undergoing postoperative RT for bone metastases between June 2008 and January 2012 were retrospectively reviewed. Patterns of local failure were assessed, and Fine and Gray's univariable and multivariable analyses (MVA) were used to evaluate factors associated with local progression, including dose intensity of RT (biological equivalent dose, BED, Gy10) and percent coverage of the surgical hardware by the RT fields. Additional predictors were similarly assessed, including patient (eg, age, performance status), disease (eg, tumor type, metastasis site), and treatment (eg, interval from surgery to RT) characteristics. RESULTS: A total of 82 cases were followed for a median of 4.3 months (11.5 months among living patients) after treatment completion. Median BED was 39 Gy10 (range, 14-60), and RT fields covered an average of 71% (standard deviation, 26%) of the hardware. Fourteen cases (17%) experienced local progression. Although most (71%) failures occurred within the RT fields, 29% occurred marginally or out of field, but adjacent to surgical hardware. Increasing coverage of the surgical hardware by RT fields was associated with a reduced risk of local failure in MVA (hazard ratio [HR], 0.10; 95% confidence interval [CI], 0.012-0.82; P = .03), whereas a greater risk of failure was seen with increasing time between surgery and RT (HR, 1.03; 95% CI, 1.01-1.06; P = .01). Extremity rather than spinal site trended toward a greater risk of failure but did not reach significance (HR, 3.79; 95% CI, 0.96-14.89; P = .057). BED ≥39 Gy10 did not predict local failure (P = .51) in MVA. CONCLUSIONS: Current strategies achieve good outcomes after postoperative RT for osseous metastases. Greater coverage of the surgical hardware with RT fields and avoiding delays between surgery and postoperative RT should be considered to reduce recurrence risk for patients with bone metastases requiring surgical stabilization.


Subject(s)
Bone Neoplasms/radiotherapy , Bone Neoplasms/surgery , Female , Humans , Male , Middle Aged , Neoplasm Metastasis , Postoperative Period , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...