Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Genes (Basel) ; 13(12)2022 11 23.
Article in English | MEDLINE | ID: mdl-36553460

ABSTRACT

Currently a hot topic, genomic selection (GS) has consistently provided powerful support for breeding studies and achieved more comprehensive and reliable selection in animal and plant breeding. GS estimates the effects of all single nucleotide polymorphisms (SNPs) and thereby predicts the genomic estimation of breeding value (GEBV), accelerating breeding progress and overcoming the limitations of conventional breeding. The successful application of GS primarily depends on the accuracy of the GEBV. Adopting appropriate advanced algorithms to improve the accuracy of the GEBV is time-saving and efficient for breeders, and the available algorithms can be further improved in the big data era. In this study, we develop a new algorithm under the Bayesian Shrinkage Regression (BSR, which is called BayesA) framework, an improved expectation-maximization algorithm for BayesA (emBAI). The emBAI algorithm first corrects the polygenic and environmental noise and then calculates the GEBV by emBayesA. We conduct two simulation experiments and a real dataset analysis for flowering time-related Arabidopsis phenotypes to validate the new algorithm. Compared to established methods, emBAI is more powerful in terms of prediction accuracy, mean square error (MSE), mean absolute error (MAE), the area under the receiver operating characteristic curve (AUC) and correlation of prediction in simulation studies. In addition, emBAI performs well under the increasing genetic background. The analysis of the Arabidopsis real dataset further illustrates the benefits of emBAI for genomic prediction according to prediction accuracy, MSE, MAE and correlation of prediction. Furthermore, the new method shows the advantages of significant loci detection and effect coefficient estimation, which are confirmed by The Arabidopsis Information Resource (TAIR) gene bank. In conclusion, the emBAI algorithm provides powerful support for GS in high-dimensional genomic datasets.


Subject(s)
Arabidopsis , Animals , Bayes Theorem , Arabidopsis/genetics , Models, Genetic , Plant Breeding , Genomics/methods , Algorithms
2.
Plants (Basel) ; 11(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36235370

ABSTRACT

Rice (Oryza sativa) is one of the most important cereal crops in the world, and yield-related agronomic traits, including plant height (PH), panicle length (PL), and protein content (PC), are prerequisites for attaining the desired yield and quality in breeding programs. Meanwhile, the main effects and epistatic effects of quantitative trait nucleotides (QTNs) are all important genetic components for yield-related quantitative traits. In this study, we conducted genome-wide association studies (GWAS) for 413 rice germplasm resources, with 36,901 single nucleotide polymorphisms (SNPs), to identify QTNs, QTN-by-QTN interaction (QQI), and their candidate genes, using a multi-locus compressed variance component mixed model, 3VmrMLM. As a result, two significant QTNs and 56 paired QQIs were detected, amongst 5219 genes of these QTNs, and 26 genes were identified as the yield-related confirmed genes, such as LCRN1, OsSPL3, and OsVOZ1 for PH, and LOG and QsBZR1 for PL. To reveal the substantial contributions related to the variation of yield-related agronomic traits in rice, we further implemented an enrichment analysis and expression analysis. As the results showed, 114 genes, nearly all significant QQIs, were involved in 37 GO terms; for example, the macromolecule metabolic process (GO:0043170), intracellular part (GO:0044424), and binding (GO:0005488). It was revealed that most of the QQIs and the candidate genes were significantly involved in the biological process, molecular function, and cellular component of the target traits. The demonstrated genetic interactions play a critical role in yield-related agronomic traits of rice, and such epistatic interactions contributed to large portions of the missing heritability in GWAS. These results help us to understand the genetic basis underlying the inheritance of the three yield-related agronomic traits and provide implications for rice improvement.

3.
Nanotechnology ; 32(45)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34415853

ABSTRACT

Unlike the traditional fabrication of distributed Bragg reflector (DBR) structure via atomic layer deposition or spin-coating, here the 1-6 pairs of magnesium fluoride (MgF2)/zinc sulfide (ZnS) alternative dielectric layers were grown via thermal evaporation. The absorption, transmission, reflection, and photoluminescence (PL) spectra were evaluated. 5 pair MgF2/ZnS denotes the largest reflectance (88.5% at 535 nm) together with a stopband at 450-650 nm among the 1- 6 pair dielectric layers, exhibiting the potential for using as DBR. Relative to the bare 4,4'-bis(carbazol-9-yl)biphenyl(CBP):(4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl) isophthalonitrile (4CzIPN) film, the PL intensity of CBP:4CzIPN/5 pair MgF2/ZnS DBR is enhanced and splitted into two peaks. The 5 pair alternative dielectric film presents more uniform aggregation over 4 pair MgF2/ZnS. The cross-sectional scanning electron microscopic image denotes explicit layering for the MgF2and ZnS. The organic light-emitting diode (OLED) incorporating 5 pair MgF2/ZnS DBR layers illustrates significantly improved electroluminescent (EL) performance due to the photons concentrated in the direction perpendicular to the DBR. The slightly narrowed EL spectrum is originated from the microcavity effect between the two Al electrodes. Here we develop a universal method for the DBR fabrication suitable to most of OLEDs.

4.
Front Genet ; 12: 649196, 2021.
Article in English | MEDLINE | ID: mdl-33854527

ABSTRACT

The mixed linear model (MLM) has been widely used in genome-wide association study (GWAS) to dissect quantitative traits in human, animal, and plant genetics. Most methodologies consider all single nucleotide polymorphism (SNP) effects as random effects under the MLM framework, which fail to detect the joint minor effect of multiple genetic markers on a trait. Therefore, polygenes with minor effects remain largely unexplored in today's big data era. In this study, we developed a new algorithm under the MLM framework, which is called the fast multi-locus ridge regression (FastRR) algorithm. The FastRR algorithm first whitens the covariance matrix of the polygenic matrix K and environmental noise, then selects potentially related SNPs among large scale markers, which have a high correlation with the target trait, and finally analyzes the subset variables using a multi-locus deshrinking ridge regression for true quantitative trait nucleotide (QTN) detection. Results from the analyses of both simulated and real data show that the FastRR algorithm is more powerful for both large and small QTN detection, more accurate in QTN effect estimation, and has more stable results under various polygenic backgrounds. Moreover, compared with existing methods, the FastRR algorithm has the advantage of high computing speed. In conclusion, the FastRR algorithm provides an alternative algorithm for multi-locus GWAS in high dimensional genomic datasets.

SELECTION OF CITATIONS
SEARCH DETAIL
...