Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748024

ABSTRACT

Chromones are a class of naturally occurring compounds, renowned for their diverse biological activities with significant relevance in medicine and biochemistry. This study marks the first analysis of rotational spectra of both the chromone monomer and its monohydrate through Fourier transform microwave spectroscopy. The observation of nine mono-substituted 13C isotopologues facilitated a semi-experimental determination of the equilibrium structure of the chromone monomer. In the case of chromone monohydrate, two distinct isomers were identified, each characterized by a combination of O-H⋯O and C-H⋯O hydrogen bonds involving the chromone's carbonyl group. This study further delved into intermolecular non-covalent interactions, employing different theoretical approaches. The relative population ratio of the two identified isomers was estimated to be about 2:1 within the supersonic jet.


Subject(s)
Chromones , Chromones/chemistry , Hydrogen Bonding , Molecular Conformation , Spectrum Analysis/methods , Microwaves , Molecular Structure
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124425, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38754207

ABSTRACT

This study explores the effects of the -CF3 group on non-covalent interactions through a comprehensive rotational investigation of the 2-(trifluoromethyl)acrylic acid-water complex. Employing Fourier transform microwave spectroscopy complemented by quantum chemical calculations, two isomers, i.e., s-cis and s-trans structures, have been observed in the pulsed jet. Based on relative intensity measurements, the s-cis to the s-trans population ratio was experimentally estimated to be âˆ¼ 1:1.2. Subsequently, a comparison of the non-covalent interactions was carried out between the three similar complexes, acrylic acid-water, methacrylic acid-water, and 2-(trifluoromethyl)acrylic acid-water, offering quantitative insights into fluorination affecting the strength of the formed hydrogen bonds important, e.g., in molecular recognition.

3.
Phytomedicine ; 130: 155611, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38776737

ABSTRACT

BACKGROUND: Glioblastoma is the most malignant and prevalent primary human brain tumor, and the immunological microenvironment controlled by glioma stem cells is one of the essential elements contributing to its malignancy. The use of medications to ameliorate the tumor microenvironment may give a new approach for glioma treatment. METHODS: Glioma stem cells were separated from clinical patient-derived glioma samples for molecular research. Other studies, including CCK8, EdU, Transwell, and others, supported luteolin's ability to treat glioma progenitor cells. Network pharmacology and molecular docking models were used to study the drug target, and qRT-PCR, WB, and IF were used to evaluate the molecular mechanism. Intracranial xenografts were examined using HE and IHC, while macrophage polarization was examined using FC. RESULTS: We originally discovered that luteolin inhibits glioma stem cells. IL6 released by glioma stem cells is blocked during medication action and inhibits glioma stem cell proliferation and invasion via the IL6/STAT3 signaling pathway. Additionally, luteolin inhibits the secretion of TGFß1, affects the polarization function of macrophages in the microenvironment, inhibits the polarization of M2 macrophages in TAM, and further inhibits various functions of glioma stem cells by affecting the IL6/STAT3 signaling pathway, luteolin crosstalk TGFß1/SMAD3 signaling pathway, and so on. CONCLUSIONS: Through the suppression of the immunological microenvironment and inhibition of the IL6/STAT3 signaling pathway, our study determined the inhibitory effect of luteolin on glioma stem cells. This medication's dual inhibitory action, which has a significant negative impact on the glioma stem cells' malignant process, makes it both a viable anti-glioma medication and a candidate for targeted glioma microenvironment therapy.

4.
PLoS One ; 19(4): e0300323, 2024.
Article in English | MEDLINE | ID: mdl-38669222

ABSTRACT

BACKGROUND: To assess the relationship between glycemic variability, glucose fluctuation trajectory and the risk of in-hospital mortality in patients with acute myocardial infarction (AMI). METHODS: This retrospective cohort study included AMI patients from eICU Collaborative Research Database. In-hospital mortality of AMI patients was primary endpoint. Blood glucose levels at admission, glycemic variability, and glucose fluctuation trajectory were three main study variables. Blood glucose levels at admission were stratified into: normal, intermediate, and high. Glycemic variability was evaluated using the coefficient of variation (CV), divided into four groups based on quartiles: quartile 1: CV≤10; quartile 2: 1030. Univariate and multivariate Cox regression models to assess the relationship between blood glucose levels at admission, glycemic variability, glucose fluctuation trajectory, and in-hospital mortality in patients with AMI. RESULTS: 2590 participants were eventually included in this study. There was a positive relationship between high blood glucose level at admission and in-hospital mortality [hazard ratio (HR) = 1.42, 95%confidence interval (CI): 1.06-1.89]. The fourth quartile (CV>30) of CV was associated with increased in-hospital mortality (HR = 2.06, 95% CI: 1.25-3.40). The findings indicated that only AMI individuals in the fourth quartile of glycemic variability, exhibited an elevated in-hospital mortality among those with normal blood glucose levels at admission (HR = 2.33, 95% CI: 1.11-4.87). Additionally, elevated blood glucose level was a risk factor for in-hospital mortality in AMI patients. CONCLUSION: Glycemic variability was correlated with in-hospital mortality, particularly among AMI patients who had normal blood glucose levels at admission. Our study findings also suggest early intervention should be implemented to normalize high blood glucose levels at admission of AMI.


Subject(s)
Blood Glucose , Databases, Factual , Hospital Mortality , Myocardial Infarction , Humans , Myocardial Infarction/mortality , Myocardial Infarction/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Male , Female , Aged , Middle Aged , Retrospective Studies , Risk Factors , Proportional Hazards Models
5.
Polymers (Basel) ; 16(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399840

ABSTRACT

Water-based chloroprene latex is a solvent-free, environmentally friendly adhesive. Currently, its market demand is growing rapidly. However, there are problems such as a lack of heat resistance and poor mechanical properties, which limit its application. The introduction of vinyl-POSS (OVS) into the resin structure can effectively improve the thermal stability of chloroprene adhesives. In this paper, modified waterborne chloroprene latex was prepared by copolymerization of methyl methacrylate and OVS with chloroprene latex. The results showed that vinyl-POSS was successfully grafted onto the main chain of the waterborne chloroprene latex, and the modified waterborne chloroprene latex had good storage stability. With the increase in vinyl-POSS, the tensile strength of the chloroprene latex firstly increased and then decreased, the tensile property (peel strength of 20.2 kgf) was maintained well at a high temperature (100 °C), and the thermal stability of the chloroprene latex was improved. When the addition amount was 4%, the comprehensive mechanical properties were their best. This study provides a new idea for the construction of a new and efficient waterborne chloroprene latex system and provides more fields for the practical application of waterborne chloroprene latex. This newly developed vinyl-POSS modified chloroprene latex has great application potential for use in home furniture, bags, and seat cushions.

6.
Anal Chem ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320403

ABSTRACT

The uranyl ion (UO22+) is the most stable form of uranium, which exhibits high toxicity and bioavailability posing a severe risk to human health. The construction of ultrasensitive, reliable, and robust sensing techniques for UO22+ detection in water and soil samples remains a challenge. Herein, a DNA network biosensor was fabricated for UO22+ detection using DNAzyme as the heavy metal recognition element and double-loop hairpin probes as DNA assembly materials. UO22+-activated specific cleavage of the DNAzyme will liberate the triggered DNA fragment, which can be utilized to launch a double-loop hairpin probe assembly among Hab, Hbc, and Hca. Through multiple cyclic cross-hybridization reactions, hexagonal DNA duplex nanostructures (n[Hab•Hbc•Hca]) were formed. This DNA network sensing system generates a high fluorescence response for UO22+ monitoring. The biosensor is ultrasensitive, with a detection limit of 2 pM. This sensing system also displays an excellent selectivity and robustness, enabling the DNA network biosensor to work even in complex water and soil samples with excellent accuracy and reliability. With the advantages of enzyme-free operation, outstanding specificity, and high sensitivity, our proposed DNA network biosensor provides a reliable, simple, and robust method for trace levels of UO22+ detection in environmental samples.

7.
Talanta ; 271: 125681, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38244307

ABSTRACT

The available heavy metals in soil samples can cause the direct toxicity on ecosystems, plants, and human health. Traditional chemical extraction and recombinant bacterial methods for the available heavy metals assay often suffer from inaccuracy and poor specificity. In this work, we construct half adder and half subtractor molecular logic gates with molecular-level biocomputation capabilities for the intelligent sensing of the available lead (Pb) and cadmium (Cd). The available Pb and Cd can cleave DNAzyme sequences to release the trigger DNA, which can activate the hairpin probe assembly in the logic system. This multifunctional logic system can not only achieve the intelligent recognition of the available Pb and Cd according to the truth tables, but also can realize the simultaneous quantification with high sensitivity, with the detection limits of 2.8 pM and 25.6 pM, respectively. The logic biosensor is robust and has been applied to determination of the available Pb and Cd in soil samples with good accuracy and reliability. The relative error (Re) between the logic biosensor and the DTPA + ICP-MS method was from -8.1 % to 7.9 %. With the advantages of programmability, scalability, and multicomputing capacity, the molecular logic system can provide a simple, rapid, and smart method for intelligent monitoring of the available Pb and Cd in environmental samples.


Subject(s)
Cadmium , Lead , Humans , Ecosystem , Reproducibility of Results , Soil
8.
J Transl Med ; 21(1): 892, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066566

ABSTRACT

AMP-activated protein kinase (AMPK) is a ubiquitous sensor of energy and nutritional status in eukaryotic cells. It plays a key role in regulating cellular energy homeostasis and multiple aspects of cell metabolism. During macrophage polarisation, AMPK not only guides the metabolic programming of macrophages, but also counter-regulates the inflammatory function of macrophages and promotes their polarisation toward the anti-inflammatory phenotype. AMPK is located at the intersection of macrophage metabolism and inflammation. The metabolic characteristics of macrophages are closely related to immune-related diseases, infectious diseases, cancer progression and immunotherapy. This review discusses the structure of AMPK and its role in the metabolism, function and polarisation of macrophages. In addition, it summarises the important role of the AMPK pathway and AMPK activators in the development of macrophage-related diseases.


Subject(s)
AMP-Activated Protein Kinases , Macrophages , Humans , AMP-Activated Protein Kinases/metabolism , Macrophages/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Homeostasis , Energy Metabolism
9.
Biomedicines ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38137420

ABSTRACT

Dental pulp pericytes are reported to have the capacity to generate odontoblasts and express multiple cytokines and chemokines that regulate the local immune microenvironment, thus participating in the repair of dental pulp injury in vivo. However, it has not yet been reported whether the transplantation of exogenous pericytes can effectively treat pulpitis, and the underlying molecular mechanism remains unknown. In this study, using a lineage-tracing mouse model, we showed that most dental pulp pericytes are derived from cranial neural crest. Then, we demonstrated that the ablation of pericytes could induce a pulpitis-like phenotype in uninfected dental pulp in mice, and we showed that the significant loss of pericytes occurs during pupal inflammation, implying that the transplantation of pericytes may help to restore dental pulp homeostasis during pulpitis. Subsequently, we successfully generated pericytes with immunomodulatory activity from human pluripotent stem cells through the intermediate stage of the cranial neural crest with a high level of efficiency. Most strikingly, for the first time we showed that, compared with the untreated pulpitis group, the transplantation of hPSC-derived pericytes could substantially inhibit vascular permeability (the extravascular deposition of fibrinogen, ** p < 0.01), alleviate pulpal inflammation (TCR+ cell infiltration, * p < 0.05), and promote the regeneration of dentin (** p < 0.01) in the mouse model of pulpitis. In addition, we discovered that the knockdown of latent transforming growth factor beta binding protein 1 (LTBP1) remarkably suppressed the immunoregulation ability of pericytes in vitro and compromised their in vivo regenerative potential in pulpitis. These results indicate that the transplantation of pericytes could efficiently rescue the aberrant phenotype of pulpal inflammation, which may be partially due to LTBP1-mediated T cell suppression.

10.
Molecules ; 28(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138561

ABSTRACT

A straightforward and convenient protocol was established for the synthesis of thiophosphates and 3-sulfenylated indoles via low-valent-tungsten-catalyzed aerobic oxidative cross-dehydrogenative coupling reactions. These reactions occur under mild conditions and simple operations with commercially available starting materials, processing the advantage of excellent atom and step economy, broad substrate scope, and good functional groups tolerance. Moreover, this transformation could be practiced on the gram scale, which exhibits great potential in the preparation of drug-derived or bioactive molecules.

11.
Sci Adv ; 9(44): eadh1738, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37922351

ABSTRACT

During summer, plants often experience increased light inputs and high temperatures, two major environmental factors with contrasting effects on thermomorphological traits. The integration of light and temperature signaling to control thermomorphogenesis in plants is critical for their acclimation in such conditions, but the underlying mechanisms remain largely unclear. We found that heat shock transcription factor 1d (HSFA1d) and its homologs are necessary for plant thermomorphogenesis during the day. In response to warm daytime temperature, HSFA1s markedly accumulate and move into the nucleus where they interact with phytochrome-interacting factor 4 (PIF4) and stabilize PIF4 by interfering with phytochrome B-PIF4 interaction. Moreover, we found that the HSFA1d nuclear localization under warm daytime temperature is mediated by constitutive photomorphogenic 1-repressed GSK3-like kinase BIN2. These results support a regulatory mechanism for thermomorphogenesis in the daytime mediated by the HSFA1s-PIF4 module and uncover HSFA1s as critical regulators integrating light and temperature signaling for a better acclimation of plants to the summer high temperature.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Glycogen Synthase Kinase 3 , Temperature , Plants/metabolism , Gene Expression Regulation, Plant , Protein Kinases
12.
PLoS One ; 18(11): e0293426, 2023.
Article in English | MEDLINE | ID: mdl-37943825

ABSTRACT

The Middle East holds a critical strategic position in global politics, economy, and military affairs, serving as a pivotal hub for the advancement of the Belt and Road Initiative (BRI) through both land and sea routes. Since the proposal of BRI, China's cooperation with Middle Eastern countries has steadily deepened. Consequently, examining the evolution of China's interaction with Middle Eastern nations over the past decade is of paramount significance for future development. This study utilizes the GDELT database to construct formulas for measuring event impact and bilateral relationship intensity. It analyzes the temporal development and spatial patterns of China's interaction with Middle Eastern countries while also examining the types of interactive relationships between China and individual countries in the Middle East under the principle of reciprocity. The findings indicate that the overall interaction between China and Middle Eastern countries remains stable. Cooperative relationships have transitioned from a "single cooperation" approach to a "dual cooperation" model involving Iran and Saudi Arabia. Moreover, the development trajectory has shifted from an imbalanced "north-high, south-low" pattern towards equilibrium, resulting in a general decline in conflict relations and a decrease in inter-country disparities. The prevalent type of interaction between countries is characterized by balance.

13.
Phys Chem Chem Phys ; 25(37): 25450-25457, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712319

ABSTRACT

Rotational spectra of the 4-fluoroacetophenone monomer and its monohydrate were investigated by Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One conformer of 4-fluoroacetophenone and two isomers of 4-fluoroacetophenone-H2O have been observed in the pulsed jets. The observation of all mono-substituted 13C isotopologues in natural abundance allows an accurate structural determination of the 4-fluoroacetophenone monomer. Both detected isomers of 4-fluoroacetophenone-H2O are stabilized by a dominant O-H⋯O and a secondary C-H⋯O hydrogen bond. The fluorination effects on the geometries, intermolecular non-covalent interactions and V3 barrier of the methyl internal rotation were analysed. The relative population ratio of the two observed isomers for 4-fluoroacetophenone-H2O was also estimated to be NI/NII ≈ 7/1.

14.
Sci Total Environ ; 905: 167253, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37741398

ABSTRACT

A fluorescence biosensor was developed for the ultrasensitive detection of the available lead in soil samples by coupling with DNAzyme and hairpin DNA cyclic assembly. The biorecognition between lead and 8-17 DNAzyme will cleave the substrate strands (DNA2) and release the trigger DNA (T), which can be used to initiate the DNA assembly reactions among the hairpins (H1, H2, and H3). The formed Y-shaped sensing scaffold (H1-H2-H3) contains active Mg2+-DNAyzmes at three directions. In the presence of Mg2+, the BHQ and FAM modified H4 will be cleaved by the Mg2+-DNAyzme to generate a high fluorescence signal for lead monitoring. The linear range of the fluorescence biosensor is from 1 pM to 100 nM and the detection limit is 0.2 pM. The biosensor also exhibited high selectivity and the nontarget competing heavy metals did not interfere with the detection results. Compare with the traditional method (DTPA+ICP-MS) for the available lead detection, the relative error (Re) is in the range from -8.3 % to 9.5 %. The results indicated that our constructed fluorescence biosensor is robust, accurate, and reliable, and can be applied directly to the detection of the available lead in soil samples without complex extraction steps.


Subject(s)
Biosensing Techniques , DNA, Catalytic , DNA, Catalytic/genetics , Limit of Detection , Lead , DNA , Biosensing Techniques/methods , Soil
15.
J Phys Chem Lett ; 14(39): 8874-8879, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37756497

ABSTRACT

This study reports the observation and characterization of two isomers of the acrolein dimer by using high-resolution rotational spectroscopy in pulsed jets. The first isomer is stabilized by two hydrogen bonds, adopting a planar configuration, and is energetically favored over the second isomer, which exhibits a dominant n → π* interaction in a nearly orthogonal arrangement. Surprisingly, the n → π* interaction was revealed to enable a concerted tunneling motion of two moieties along the carbonyl group. This motion leads to the inversion of transient chirality associated with the exchange of donor-acceptor roles, as revealed by the spectral feature of quadruplets. Inversion of transient chirality is a fundamental phenomenon in quantum mechanics and commonly observed for only inversional motions of protons. It is the first discovery, to the best of our knowledge, that such heavy moieties can also undergo chirality inversion.

16.
Polymers (Basel) ; 15(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765579

ABSTRACT

Aqueous polyurethane is an environmentally friendly, low-cost, high-performance resin with good abrasion resistance and strong adhesion. Cationic aqueous polyurethane is limited in cathodic electrophoretic coatings due to its complicated preparation process and its poor stability and single performance after emulsification and dispersion. The introduction of perfluoropolyether alcohol (PFPE-OH) and light curing technology can effectively improve the stability of aqueous polyurethane emulsions, and thus enhance the functionality of coating films. In this paper, a new UV-curable fluorinated polyurethane-based cathodic electrophoretic coating was prepared using cationic polyurethane as a precursor, introducing PFPE-OH capping, and grafting hydroxyethyl methacrylate (HEMA). The results showed that the presence of perfluoropolyether alcohol in the structure affected the variation of the moisture content of the paint film after flash evaporation. Based on the emulsion particle size and morphology tests, it can be assumed that the fluorinated cationic polyurethane emulsion is a core-shell structure with hydrophobic ends encapsulated in the polymer and hydrophilic ends on the outer surface. After abrasion testing and baking, the fluorine atoms of the coating were found to increase from 8.89% to 27.34%. The static contact angle of the coating to water was 104.6 ± 3°, and the water droplets rolled off without traces, indicating that the coating is hydrophobic. The coating has excellent thermal stability and tensile properties. The coating also passed the tests of impact resistance, flexibility, adhesion, and resistance to chemical corrosion in extreme environments. This study provides a new idea for the construction of a new and efficient cathodic electrophoretic coating system, and also provides more areas for the promotion of cationic polyurethane to practical applications.

17.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447527

ABSTRACT

A phosphorylcholine polymer (poly(MPC-co-BMA-co-TSMA), PMBT) was prepared by free radical polymerization and coated on the surface of the polymethylpentene hollow fiber membrane (PMP-HFM). ATR-FTIR and SEM analyses showed that the PMBT polymer containing phosphorylcholine groups was uniformly coated on the surface of the PMP-HFM. Thermogravimetric analysis showed that the PMBT had the best stability when the molar percentage of MPC monomer in the polymer was 35%. The swelling test and static contact angle test indicated that the coating had excellent hydrophilic properties. The fluorescence test results showed that the coating could resist dissolution with 90% (v/v%) ethanol solution and 1% (w/v%) SDS solution. The PMBT coating was shown to be able to decrease platelet adherence to the surface of the hollow fiber membrane, and lower the risk of blood clotting; it had good blood compatibility in tests of whole blood contact and platelet adhesion. These results show that the PMBT polymer may be coated on the surface of the PMP-HFM, and is helpful for improving the blood compatibility of membrane oxygenation.

18.
Heliyon ; 9(7): e17651, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449128

ABSTRACT

Accurate segmentation of the mandibular canal is essential in dental implant and maxillofacial surgery, which can help prevent nerve or vascular damage inside the mandibular canal. Achieving this is challenging because of the low contrast in CBCT scans and the small scales of mandibular canal areas. Several innovative methods have been proposed for mandibular canal segmentation with positive performance. However, most of these methods segment the mandibular canal based on sliding patches, which may adversely affect the morphological integrity of the tubular structure. In this study, we propose whole mandibular canal segmentation using transformed dental CBCT volume in the Frenet frame. Considering the connectivity of the mandibular canal, we propose to transform the CBCT volume to obtain a sub-volume containing the whole mandibular canal based on the Frenet frame to ensure complete 3D structural information. Moreover, to further improve the performance of mandibular canal segmentation, we use clDice to guarantee the integrity of the mandibular canal structure and segment the mandibular canal. Experimental results on our CBCT dataset show that integrating the proposed transformed volume in the Frenet frame into other state-of-the-art methods achieves a 0.5%∼12.1% improvement in Dice performance. Our proposed method can achieve impressive results with a Dice value of 0.865 (±0.035), and a clDice value of 0.971 (±0.020), suggesting that our method can segment the mandibular canal with superior performance.

19.
J Phys Chem A ; 127(28): 5772-5778, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37418276

ABSTRACT

The rotational spectrum of acetoin (3-hydroxy-2-butanone) was measured by using Fourier transform microwave spectroscopy with the aid of quantum chemical calculations. Only one conformer of acetoin was detected in the pulsed jet, whose spectrum featured the splittings raised from the internal rotation of the methyl top linking to the C═O group. Based on the spectroscopic result, radio-astronomical searches for acetoin were carried out toward the massive star-forming region Sgr B2(N) using the Shanghai Tianma 65 m and IRAM 30 m radio telescopes. No lines belonging to acetoin were detected toward Sgr B2(N). Its upper limit of column density was calculated.

20.
Med Phys ; 50(7): 4220-4233, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37102270

ABSTRACT

BACKGROUND: Cancer prognosis before and after treatment is key for patient management and decision making. Handcrafted imaging biomarkers-radiomics-have shown potential in predicting prognosis. PURPOSE: However, given the recent progress in deep learning, it is timely and relevant to pose the question: could deep learning based 3D imaging features be used as imaging biomarkers and outperform radiomics? METHODS: Effectiveness, reproducibility in test/retest, across modalities, and correlation of deep features with clinical features such as tumor volume and TNM staging were tested in this study. Radiomics was introduced as the reference image biomarker. For deep feature extraction, we transformed the CT scans into videos, and we adopted the pre-trained Inflated 3D ConvNet (I3D) video classification network as the architecture. We used four datasets-LUNG 1 (n = 422), LUNG 4 (n = 106), OPC (n = 605), and H&N 1 (n = 89)-with 1270 samples from different centers and cancer types-lung and head and neck cancer-to test deep features' predictiveness and two additional datasets to assess the reproducibility of deep features. RESULTS: Support Vector Machine-Recursive Feature Elimination (SVM-RFE) selected top 100 deep features achieved a concordance index (CI) of 0.67 in survival prediction in LUNG 1, 0.87 in LUNG 4, 0.76 in OPC, and 0.87 in H&N 1, while SVM-RFE selected top 100 radiomics achieved CIs of 0.64, 0.77, 0.73, and 0.74, respectively, all statistically significant differences (p < 0.01, Wilcoxon's test). Most selected deep features are not correlated with tumor volume and TNM staging. However, full radiomics features show higher reproducibility than full deep features in a test/retest setting (0.89 vs. 0.62, concordance correlation coefficient). CONCLUSION: The results show that deep features can outperform radiomics while providing different views for tumor prognosis compared to tumor volume and TNM staging. However, deep features suffer from lower reproducibility than radiomic features and lack the interpretability of the latter.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Reproducibility of Results , Feasibility Studies , Lung Neoplasms/diagnostic imaging , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...