Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 2071-2085, 2023 09.
Article in English | MEDLINE | ID: mdl-36914902

ABSTRACT

Nitidine chloride (NC) is effective on cancer in many tumors, but its effect on bladder cancer (BC) is unknown. We conducted cell function experiments to verify the antineoplastic effect of NC on BC cell lines (5637, T24, and UM-UC-3) in vitro. Then, mRNAs of NC-treated and NC-untreated BC cells were extracted for mRNA sequencing. Differentially expressed genes (DEGs), expression analysis, and drug molecular docking were conducted to discover the target gene of NC. Finally, functional enrichment was analyzed to explore the underlying mechanisms. NC dramatically inhibited proliferation, migration, and invasion, and it induced apoptosis and arrested the S and G2/M phases of BC cell lines. Lymphocyte antigen 75 (LY75) appeared to be the target of NC. LY75 was highly expressed and had the ability to distinguish BC tissue from non-cancerous tissue. Then, drug molecular docking confirmed the targeting relationship between NC and LY75. Gene enrichment analysis showed that the downregulated genes, after being treated with NC, were mainly enriched in pathways relevant to cell pathophysiological processes. NC inhibits BC cell proliferation, migration, and invasion, induces apoptosis, and arrests cell cycles by downregulating the expression of LY75. This study provides molecular and theoretical bases for NC treatment of BC.


Subject(s)
Signal Transduction , Urinary Bladder Neoplasms , Humans , Molecular Docking Simulation , Cell Line, Tumor , Cell Proliferation , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Apoptosis , Lymphocytes , Cell Movement
2.
Oncol Lett ; 14(4): 3935-3940, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28959361

ABSTRACT

The present study aimed to investigate the effect of various concentrations of etoposide (VP-16) on the E3 ubiquitin-protein ligase Mdm2 (Mdm2)-retinoblastoma (Rb) signaling pathway in the cellular senescence of A549 lung adenocarcinoma cells. A549 cells were randomly divided into the following four groups: Control group (no treatment), group 1 (1 µmol/l VP-16), group 2 (5 µmol/l VP-16) and group 3 (25 µmol/l VP-16). Each group was cultured for 48 h after treatment prior to observation of the alterations to cellular morphology. The cell cycle distribution of each group was also detected by flow cytometry. In addition, the activity of cellular senescence-associated ß-galactosidase, and the expression of Mdm2 and phosphorylated (p-) Rb protein, was measured. The percentage of senescent cells was significantly higher following VP-16 treatment compared with the control group. The percentage of G1 phase cells, and p-Rb protein and Mdm2 protein expression were also significantly different following VP-16 treatment compared with the control group. VP-16 increased the activity of ß-galactosidase in the A459 cells. VP-16 also decreased the expression level of Mdm2 and p-Rb protein and inhibited cell cycle progression in G1. These results indicate that VP-16 induces the cellular senescence of A549 cells via the Mdm2-Rb signaling pathway. However, further investigations are required to validate the mechanisms underlying these effects of VP-16.

SELECTION OF CITATIONS
SEARCH DETAIL
...