Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731558

ABSTRACT

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Subject(s)
Cellulose , Escherichia coli , Metal Nanoparticles , Silver , Staphylococcus aureus , Silver/chemistry , Metal Nanoparticles/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Cellulose/chemistry , Cellulose/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanofibers/chemistry , Nanocomposites/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
2.
Carbohydr Polym ; 336: 122138, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670763

ABSTRACT

Water-soluble silver nanoclusters (AgNCs) as a new type of fluorescent material have attracted much attention for their remarkable optical properties and excellent cytocompatibility. However, it is still challenging to synthesize water-soluble AgNCs with good cytocompatibility and excellent fluorescence. Herein, the dialdehyde nanofibrillated cellulose (DANFC)- reduced water-soluble AgNCs capped by glutathione (GSH) with tunable fluorescence emissions were first reported. The DANFC provides a mild reduction environment and crystal growth system for the coordination between silver ions and GSH compared to conventional methods using strong reducing agents. The AgNCs with intense red fluorescence (R-AgNCs@GSH, size ∼2.24 nm) and green fluorescence (G-AgNCs@GSH, size ∼1.93 nm) were produced by varying the ratios of silver sources and ligands, and could maintain stable fluorescence intensity over 6 months. Moreover, the CCK-8 study demonstrated that the R-AgNCs@GSH and G-AgNCs@GSH reduced by DANFC of excellent cytocompatibility (cell viability >90 %) and enable precise multicolor intracellular imaging of Hela cells in 1 h. This work proposes a novel method to synthesize water-soluble AgNCs with tunable fluorescence emission at room temperature based on the classical silver- mirror reaction (SMR) using DANFC as reducing agent, and the synthesized fluorescent AgNCs have great potential as novel luminescent nanomaterials in biological research.


Subject(s)
Cellulose , Metal Nanoparticles , Silver , Solubility , Water , Silver/chemistry , Humans , Cellulose/chemistry , HeLa Cells , Metal Nanoparticles/chemistry , Water/chemistry , Glutathione/chemistry , Nanofibers/chemistry , Cell Survival/drug effects , Optical Imaging/methods , Fluorescence , Fluorescent Dyes/chemistry
3.
Int J Biol Macromol ; 267(Pt 2): 131462, 2024 May.
Article in English | MEDLINE | ID: mdl-38614163

ABSTRACT

The rapid development of the industry has led to the destruction of the earth's ozone layer, resulting in an increasingly serious problem of excessive ultraviolet radiation. Exploring effective measures to address these problems has become a hot topic. Lignin shows promise in the design and preparation of anti-ultraviolet products due to its inherent properties. However, it is important to investigate way to enhance the reactivity of lignin and determine its application form in related products. In this study, phenolic reactions with tea polyphenols were conducted through acid-catalyzed conversion, utilizing organic solvent lignin as the primary material. The phenolic hydroxyl content of the original lignin increased significantly by 218.8 %, resulting in notable improvements in UV resistance and oxidation resistance for phenolic lignin. Additionally, micro-nanocapsule emulsions were formed using phenolic lignin particles as surfactants through ultrasonic cavitation with small-molecule sunscreens. A bio-based sunscreen was prepared with phenolated lignin micro-nanocapsules as the active ingredient, achieving an SPF 100.2 and demonstrating excellent stability. The sunscreen also exhibited strong antioxidant properties and impermeability, ensuring user safety. This research offers a current solution for improving the application of lignin in sunscreens while also broadening the potential uses of plant-based materials in advanced functional products.


Subject(s)
Lignin , Oxidation-Reduction , Polyphenols , Sunscreening Agents , Tea , Ultraviolet Rays , Lignin/chemistry , Polyphenols/chemistry , Catalysis , Tea/chemistry , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Acids/chemistry
4.
Carbohydr Polym ; 330: 121824, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368104

ABSTRACT

Widely employed petroleum-based food packaging materials have inflicted irreparable harm on ecosystems, primarily stemming from their non-biodegradable attributes and recycling complexities. Inspired by natural nacre with a layered aragonite platelet/nanofiber/protein multi-structure, we prepared high-barrier composite films by self-assembly of cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), montmorillonite (MMT), polyvinyl alcohol (PVA) and alkyl ketene dimer (AKD). The composite films demonstrated outstanding barrier properties with oxygen vapor transmission of 0.193 g·mm·m-2·day-1 and water vapor transmission rates of 0.062 cm3·mm·m-2·day-1·0.1 MPa-1, which were significantly lower than those of most biomass-degradable packaging materials. Additionally, the impacts of mixing nanocellulose with various aspect ratios on the tensile strength and folding cycles of the films were examined. The exceptional resistance of the composite films to oil and water provides a novel and sustainable approach to reduce non-biodegradable plastic packaging.


Subject(s)
Nanofibers , Nanoparticles , Food Packaging , Ecosystem , Cellulose/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry
5.
Int J Biol Macromol ; 262(Pt 2): 130016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365139

ABSTRACT

In this study, we investigated the structural characterization and biological activities of Bletilla striata polysaccharides (BSPs) for their role as antioxidants and anti-melanogenesis agents in skin healthcare protection. Three neutral polysaccharides (BSP-1, BSP-2, and BSP-3) with molecular weights of 269.121 kDa, 57.389 kDa, and 28.153 kDa were extracted and purified. Their structural characteristics were analyzed by ion chromatography, GC-MS, and 1D/2D NMR. The results showed that BSP-1, which constitutes the major part of BSPs, was composed of α-D-Glcp, ß-D-Glcp, ß-D-Manp, and 2-O-acetyl-ß-D-Manp, with the branched-chain accompanied by ß-D-Galp and α-D-Glcp. BSP-1, BSP-2, and BSP-3 can enhance the total antioxidant capacity of skin fibroblasts with non-toxicity. Meanwhile, BSP-1, BSP-2, and BSP-3 could significantly inhibit the proliferative activity of melanoma cells. Among them, BSP-1 and BSP-2 showed more significance in anti-melanogenesis, tyrosinase inhibition activity, and cell migration inhibition. BSPs have effective antioxidant capacity and anti-melanogenesis effects, which should be further emphasized and developed as skin protection components.


Subject(s)
Antioxidants , Orchidaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Orchidaceae/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight , Polysaccharides/chemistry
6.
Mater Horiz ; 11(6): 1588-1596, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38270542

ABSTRACT

Biomass-based hydrogels have displayed excellent potential in flexible strain sensors due to their adequacy, biocompatibility, nontoxic and degradability. Nevertheless, their inferior mechanical properties, particularly at cryogenic temperatures, impeded their extensive utilization. Herein, we reported a rationally designed strain sensor fabricated from a gelatin and cellulose-derived hydrogel with superior mechanical robustness, cryogenic endurance, and flexibility, owing to a triple dynamic bond strategy (TDBS), namely the synergistic reinforcement among potent hydrogen bonds, imine bonds, and sodium bonds. Beyond conventional sacrificing bonds consisting of hydrogen bonds, dynamic covalent bonds and coordinate bonds, synergetic triple dynamic bonds dominated by strong hydrogen bonds and assisted by imine and sodium bonds with higher strength can dissipate more mechanical energy endowing the hydrogel with 38-fold enhancement in tensile strength (6.4 MPa) and 39-fold improvement in toughness (2.9 MPa). We further demonstrated that this hydrogel can work as a robust and biodegradable strain sensor exhibiting remarkable flexibility, broad detection range, considerable sensitivity and excellent sensing stability. Furthermore, owing to the improved nonfreezing performance achieved from incorporating sodium salts, the sensor delivered outstanding sensing properties under subzero conditions such as -20 and -4 °C. It is anticipated that the TDBS can create diverse high-performance soft-electronics for broad applications in human-machine interfaces, energy and healthcare.


Subject(s)
Cellulose , Hydrogels , Humans , Biomass , Imines , Sodium
7.
Int J Biol Macromol ; 254(Pt 1): 127699, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913878

ABSTRACT

Polysaccharides as the biopolymers are showing various structural and modulatory functions. Effective separation of carbohydrate structures is essential to understanding their function. In this study, we choose an efficient organic acid in combination with recyclable organic solvent three-phase partitioning technology for the simultaneous extraction of polysaccharides from Ampelopsis japonica (AJPs) to ensure the integrity of linear and branched polysaccharide. The monosaccharide composition, glycosidic linkage information, structural and physicochemical analyses and associations with antioxidant activities were extensively analyzed. Synergistic extraction was compared with the conventional hot water extraction method and the results showed that AJPs-HNP exhibited better elastic properties and excellent antioxidant activity. Correlation analysis confirmed that the antioxidant activity of AJPs was significantly correlated with relative molecular weight, uronic acid content and terminal glycoside linkage molar ratios. The collaborative processing has significantly improved the utilization potential of AJPs and provides a sound theoretical foundation for the effective extraction and separation of polysaccharides. Overall, this work provides systematic and comprehensive scientific information on the physicochemical, rheological and antioxidant properties of AJPs, revealing their potential as natural antioxidants in the functional food and pharmaceutical industries.


Subject(s)
Ampelopsis , Antioxidants , Antioxidants/pharmacology , Antioxidants/chemistry , 1-Butanol , Butanols , Molecular Weight , Polysaccharides/chemistry
8.
Small ; 19(40): e2301353, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37282825

ABSTRACT

2D carbon nanomaterials such as graphene, carbon nanosheets, and their derivatives, representing the emerging class of advanced multifunctional materials, have gained great research interest because of their extensive applications ranging from electrochemistry to catalysis. However, sustainable and scalable synthesis of 2D carbon nanosheets (CNs) with hierarchical architecture and irregular structure via a green and low-cost strategy remains a great challenge. Herein, prehydrolysis liquor (PHL), an industrial byproduct of the pulping industry, is first employed to synthesize CNs via a simple hydrothermal carbonization technique. After mild activation with NH4 Cl and FeCl3 , the as-prepared activated CNs (A-CN@NFe) display an ultrathin structure (≈3 nm) and a desirable specific surface area (1021 m2 g-1 ) with hierarchical porous structure, which enables it to be both electroactive materials and structural support materials in nanofibrillated cellulose/A-CN@NFe/polypyrrole (NCP) nanocomposite, and thus endowing nanocomposite with impressive capacitance properties of 2546.3 mF cm-2 at 1 mA cm-2 . Furthermore, the resultant all-solid-state symmetric supercapacitor delivers a satisfactory energy storage ability of 90.1 µWh cm-2 at 250.0 µW cm-2 . Thus, this work not only opens a new window for sustainable and scalable synthesis of CNs, but also offers a double profits strategy for energy storage and biorefinery industry.

9.
Carbohydr Polym ; 311: 120753, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028856

ABSTRACT

Lignin-containing cellulose nanopapers are emerging multifunctional materials in the fields of coatings, films, and packaging. However, the forming mechanism and properties of nanopapers with various lignin content have not been thoroughly studied. In this work, a mechanically strong nanopaper was fabricated based on lignin-containing cellulose micro- and nano-hybrid fibrils (LCNFs). The influence of lignin content and fibrils morphology on the formation process of nanopapers was investigated to understand the strengthening mechanism of nanopapers. LCNFs with high lignin content provided nanopapers with intertwined micro- and nano-hybrid fibrils layers with small layer spacing, while LCNFs with low lignin content offered nanopapers interlaced nanofibrils layers with large layer spacing. Although lignin was expected to interfere with hydrogen bonds between fibrils, the uniformly distributed lignin contributed to the stress transfer between fibrils. Due to the good coordination between microfibrils, nanofibrils and lignin (as network skeleton, filler and natural binder, respectively), the well-designed LCNFs nanopapers with lignin content of 14.5 % showed excellent mechanical properties, including tensile strength (183.8 MPa), Young's modulus (5.6 GPa) and elongation (9.2 %). This work deeply reveals the relationship between lignin content, morphology and strengthening mechanism of nanopapers, and providing theoretical guidance for employing LCNFs as structural and reinforcing materials to design robust composites.

10.
Front Genet ; 14: 1109491, 2023.
Article in English | MEDLINE | ID: mdl-36873946

ABSTRACT

Undifferentiated pleomorphic sarcoma (UPS), once termed as malignant fibrous histiocytoma, has always been diagnosed exclusively in clinical practice because it lacks any defined resemblance to normal mesenchymal tissue. Although myxofibrosarcoma (MFS) has been separated from UPS due to its fibroblastic differentiation with myxoid stroma, UPS and MFS are still identified as a sarcoma group in terms of molecular landscapes. In this review article, we will describe the associated genes and signaling pathways involved in the process of sarcoma genesis and make a summary of conventional management, targeted therapy, immunotherapy, and some novel potential treatments of UPS/MFS. With the progressive advancements in medical technology and a better understanding about the pathogenic mechanism of UPS/MFS in the coming decades, new lights will be shed on the successful management of UPS/MFS.

11.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838845

ABSTRACT

The charge plays an important role in cellulose nanocrystal (CNC) self-assembly to form liquid crystal structures, which has rarely been systematically explored. In this work, a novel technique combining atomic force microscopy force and atomistic molecular dynamics simulations was addressed for the first time to systematically investigate the differences in the CNC self-assembly caused by external positive and negative charges at the microscopic level, wherein sodium polyacrylate (PAAS) and chitosan oligosaccharides (COS) were used as external positive and negative charge additives, respectively. The results show that although the two additives both make the color of CNC films shift blue and eventually disappear, their regulatory mechanisms are, respectively, related to the extrusion of CNC particles by PAAS and the reduction in CNC surface charge by COS. The two effects both decreased the spacing between CNC particles and further increased the cross angle of CNC stacking arrangement, which finally led to the color variations. Moreover, the disappearance of color was proved to be due to the kinetic arrest of CNC suspensions before forming chiral nematic structure with the addition of PAAS and COS. This work provides an updated theoretical basis for the detailed disclosure of the CNC self-assembly mechanism.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Nanoparticles/chemistry
12.
Int J Biol Macromol ; 234: 123597, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796560

ABSTRACT

Structural color is an eye-catching phenomenon in nature, which originates from the synergistic effect of cholesteric structure inside living organisms and light. However, biomimetic design and green construction of dynamically tunable structural color materials have been a great challenge in the field of photonic manufacturing. In this work, the new ability of L-lactic acid (LLA) to multi-dimensionally modulate the cholesteric structures constructed from cellulose nanocrystals (CNC) is revealed for the first time. By studying the molecular-scale hydrogen bonding mechanism, a novel strategy that electrostatic repulsion and hydrogen bonding forces jointly drive the uniform arrangement of cholesteric structures is proposed. Due to the flexible tunability and uniform alignment of the CNC cholesteric structure, different encoded messages were developed in the CNC/LLA (CL) pattern. Under different viewing conditions, the recognition information of different digits will continue to reversibly and rapidly switch until the cholesteric structure is destroyed. In addition, the LLA molecules facilitated the more sensitive response of the CL film to the humidity environment, making it exhibit reversible and tunable structural colors under different humidity. These excellent properties provide more possibilities for the application of CL materials in the fields of multi-dimensional display, anti-counterfeiting encryption, and environmental monitoring.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Humidity , Nanoparticles/chemistry , Hydrogen Bonding
13.
J Neuroinflammation ; 20(1): 16, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36710351

ABSTRACT

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). Anxiety and depression are the most common psychiatric comorbidities of MS, which seriously affect patients' quality of life, treatment compliance, and prognosis. However, current treatments for anxiety and depression in MS show low therapeutic efficacy and significant side effects. In the present study, we explored the therapeutic effects of a novel low-toxic anti-inflammatory drug, nanoparticulate magnesium hydride (MgH2), on mood disorders of MS. We observed that anxiety/depression-like behaviors in experimental autoimmune encephalomyelitis (EAE) mice were alleviated by MgH2 treatment. In addition, disease severity and inflammatory demyelination were also diminished. Furthermore, we confirmed the suppressive effect of MgH2 on depression in the acute restraint stress model. Mechanistically, MgH2 may play a therapeutic role by promoting microglial M2 polarization, inhibiting microglial M1 polarization, and reducing oxidative stress and mitochondrial damage. Therefore, nanoparticulate MgH2 may be a promising therapeutic drug for psychiatric comorbidities of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Microglia/physiology , Depression/drug therapy , Depression/etiology , Quality of Life , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Oxidative Stress , Anxiety/drug therapy , Anxiety/etiology , Mice, Inbred C57BL
14.
Neuropathology ; 43(1): 72-83, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35789505

ABSTRACT

Glioblastoma (GBM) is the most lethal primary tumor in the human brain and lacks favorable treatment options. Sex differences in the outcome of GBM are broadly acknowledged, but the underlying molecular mechanisms remain largely unknown. To identify the sex-dependent critical genes in the progression of GBM, raw data from several microarray datasets with the same array platform were downloaded from the Gene Expression Omnibus (GEO) database. These datasets included tumorous and normal tissue from patients with GBM and crucial sex features. Then, the differentially expressed genes (DEGs) in female and male tumors were identified via bioinformatics analysis, respectively. Functional signatures of the identified DEGs were further annotated by Gene Ontology (GO) and pathway enrichment analyses. Venn diagram and functional protein-protein interaction (PPI) network analyses were performed to screen out the sex-specific DEGs. Survival analysis of patients with differences in the expression level of selected genes was then carried out using the data from The Cancer Genome Atlas (TCGA). Here, we showed that ECT2, AURKA, TYMS, CDK1, NCAPH, CENPU, OIP5, KIF14, ASPM, FBXO5, SGOL2, CASC5, SHCBP1, FN1, LOX, IGFBP3, CSPG4, and CD44 were enriched in female tumor samples, whereas TNFSF13B, CXCL10, CXCL8, CXCR4, TLR2, CCL2, and FCGR2A were enriched in male tumor samples. Among these key genes, interestingly, ECT2 was associated with increased an survival rate for female patients, whileTNFSF13B could be regarded as a potential marker of poor prognosis in male patients. These results suggested that sex differences in patients may be attributed to the heterogeneous gene activity, which might influence the oncogenesis and the outcomes of GBM.


Subject(s)
Glioblastoma , Transcriptome , Humans , Female , Male , Glioblastoma/pathology , Gene Expression Profiling , Gene Regulatory Networks , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Prognosis , Nuclear Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Shc Signaling Adaptor Proteins/genetics , Shc Signaling Adaptor Proteins/metabolism
15.
Int J Biol Macromol ; 224: 1142-1151, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36302477

ABSTRACT

This study described the multiphasic and multi-sized lignocellulose-based suspension (LBS) prepared by green method and its adsorption and phase behavior at O/W interface. The LBS consisting of lignin containing microfibrils (LMFs), lignin containing cellulose nanofibers (LCNFs), and lignin nanoparticles (LNPs), was obtained by mechanical fibrillation and high-shear treatments. They had different functions in emulsion stabilization: (1) synergistic irreversible adsorption of LCNFs and LNPs limited the coalescence of droplets and formed micro-sized droplets; (2) droplets filled in the LMFs network creating a strong fiber-droplet network structure. The fluorescent micrographs confirmed the synergistic irreversible adsorption of LCNFs and LNPs on the surface of the droplets, which was conductive to the high interfacial stability. The droplets were deformed rather than being destroyed under the high flow speed. The increasing viscosity, improving gel-like behavior, decreasing creep compliance and increasing yield stress demonstrated that the internal droplets can support the fiber network to delay the destruction under shear force. And the fiber-droplet network can automatically regenerate in situ after completed destruction.


Subject(s)
Cellulose , Lignin , Adsorption , Cellulose/chemistry , Emulsions/chemistry , Water/chemistry
16.
Int J Biol Macromol ; 226: 982-995, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36495990

ABSTRACT

This research established the optimal conditions for alkali-assisted extraction (AAE) of bioactive polysaccharides from Bletilla striata integrated with response surface methodology (RSM) and the genetic algorithm-artificial neural networks (GA-ANN). In comparison with RSM, the ANN model showed a relatively higher determination coefficient in the global output values (RSM: ANN = 0.9270: 0.9742) performing more satisfactorily in the validation. Under the optimum conditions (52 °C; 167 min, and 0.01 mol/L NaOH), the extraction yields, IC50 of ABTS, and FRAP value were 29.53 ± 0.97 %, 3.41 mg/mL, and 39.11 µmol Fe2+/g, respectively. The results indicated that BSPs-A was mainly composed of glucose and mannose with small amounts of arabinose, galactose, and galacturonic acid, while possessed a molecular weight of about 305.94 kDa (Mw). The structural characterization of BSPs-A was initially characterized by FT-IR, SEM, and Congo red tests, which indicated that BSPs-A possessed a triple helix conformation of typical Bletilla striata polysaccharides. In addition, BSPs-A exhibited excellent antioxidant activity, which was further confirmed by a series of in vitro antioxidant activity assays including DPPH, ABTS, FRAP, and ORAC. After incubation in the BSA-glucose system for 15 days, BSPs-A showed inhibition of the advanced glycation end products (AGEs) formation for the first time.


Subject(s)
Antioxidants , Orchidaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Spectroscopy, Fourier Transform Infrared , Polysaccharides/pharmacology , Polysaccharides/chemistry , Orchidaceae/chemistry , Neural Networks, Computer , Glucose , Algorithms
17.
J Colloid Interface Sci ; 630(Pt A): 604-617, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36272215

ABSTRACT

The preparation of carboxylated cellulose nanocrystals (cCNCs) and their stabilization in oil-in-water (O/W) Pickering emulsions hold great potential for application and research value. In this work, a novel integrated oxidation strategy was proposed to prepare needle-like cCNCs by sodium periodate (NaIO4)/Fenton (SF-cCNCs) with considerable yield (58.58 %), plentiful carboxyl groups (1.28 mmol/g), and high crystallinity (83.3 %). The distinctive features of smaller size and high viscosity accelerated the as-prepared SF-cCNCs to be used in stabilizing Pickering emulsion. Moreover, the effects of oil-water ratio (OWR), SF-cCNCs content, pH, and sodium chloride (NaCl) content on the stability of SF-cCNCs-stabilized Pickering emulsions were also investigated systematically. Interestingly, the stability of the as-obtained emulsions was dependent on pH and salt. Afterwards, the rheological behaviors validated that the emulsion viscosity increased rapidly after adding NaCl, which was dominated by the elastic behavior. Finally, the main stabilization mechanism was confirmed to be interfacial adsorption of SF-cCNCs rather than the formation of spatial network structures between droplets. This study reports a synthetic strategy to efficiently prepare SF-cCNCs, endowing the SF-cCNCs stabilized Pickering emulsion with environmentally friendly, long-term stable and highly anti-agglomeration abilities for cosmetics and food products.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Emulsions/chemistry , Sodium Chloride , Emulsifying Agents , Nanoparticles/chemistry , Water/chemistry
18.
J Colloid Interface Sci ; 629(Pt B): 581-590, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36182755

ABSTRACT

Although thousands of superhydrophobic composites have been reported, it is still a challenge to develop eco-friendly superhydrophobic materials by a simple and low-cost strategy. Here, a paper-based superhydrophobic material was prepared by carbon fiber powders and polydimethylsiloxane through a facile spraying method. This obtained material has excellent liquid resistance and self-cleaning properties, whose contact angle reaches 155°. In addition, it possesses excellent photothermal conversion characteristics with a stable surface temperature of 73.4 °C and good water evaporation performance with an evaporation rate up to 1.08 kg/(m2·h) under one solar intensity (100 mW/cm2). Also, it has outstanding self-deicing performance, whose deicing time is 120 s earlier than that of the untreated surface under one solar intensity. An adaptability test shows this strategy of functional coatings can also be applied to other fiber substrates (coating paper, kraft paper, non-woven fabric, paulownia veneer, etc.). Overall, this superhydrophobic material has a promising application prospect in many fields such as waterproof packaging, deicing materials, water evaporation materials, etc.

19.
Mater Horiz ; 9(12): 3118, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36382582

ABSTRACT

Correction for 'A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor' by Haocheng Fu et al., Mater. Horiz., 2022, 9, 1412-1421, https://doi.org/10.1039/D2MH00028H.

20.
Int J Biol Macromol ; 222(Pt B): 2512-2522, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36240889

ABSTRACT

The industrial lignin has shown great potential to replace some of petrochemical. But the deep color of lignin limits their application in high-value field. The extraction of light-colored lignin from lignocellulose still remains challenging. Here, we reported a strategy for rapid extraction of lignin from corn stover by using a new ternary deep eutectic solvent (TDES) composed of choline chloride (ChCl), formic acid (FA) and maleic acid (MA). The color feature and structural characterization of obtained lignin was comprehensively elucidated. The results revealed that the lignin streams had light color (brightness ISO 23.44 %) with a high yield (76.3 %), purity (93.5 %), low molecular weight (Mw 1544-2040 g/mol), and low polydispersity (PDI ≤ 1.76). The introduction of MA could reduce the destruction of lignin substructure during the treatment process and avoid the deepening of lignin color. Quantitative analysis of conjugated carbonyl and quinone carbonyl and semi-quantitative analysis of lignin by 2D NMR showed that temperature had a great influence on its structure.


Subject(s)
Lignin , Zea mays , Lignin/chemistry , Deep Eutectic Solvents , Biomass , Solvents/chemistry , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...