Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(10): 2390-2393, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35561358

ABSTRACT

This paper studies the use of MUltiple SIgnal Classification (MUSIC) as a super-resolution algorithm to improve demodulation results for intrinsic Fabry-Perot interferometer (IFPI) sensor arrays. Through distinction between noise and signal subspaces in an observation matrix, this paper shows that a 38-fold improvement in the full width at half maximum (FWHM) estimation of IFPI optical path differences (OPD) can be achieved using this algorithm. Based on this improved method, this paper demonstrates that a tunable laser with a 1.3-nm tuning range can achieve the same sensor demodulation performance as a tunable laser with a 50-nm tuning range if a conventional Fourier transform-based algorithm is used. This paper presents a new approach to analyzing optical signals produced by multiple multiplexed interferometers with similar OPDs with potential applications for both single-mode and multiple-mode devices.

2.
Nanotechnology ; 33(24)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35240590

ABSTRACT

This paper reports on the formation of moth-eye nanopillar structures on surfaces of alkali-aluminosilicate Gorilla glass substrates using a self-masking plasma etching method. Surface and cross-section chemical compositions studies were carried out to study the formation of the nanostructures. CFxinduced polymers were shown to be the self-masking material during plasma etching. The nanostructures enhance transmission at wavelengths over 525 nm may be utilized for fluid-induced switchable haze. Additional functionalities associated with nanostructures may be realized such as self-cleaning, anti-fogging, and stain-resistance.

3.
Sci Rep ; 10(1): 21014, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273503

ABSTRACT

This paper reports on the use of machine learning to delineate data harnessed by fiber-optic distributed acoustic sensors (DAS) using fiber with enhanced Rayleigh backscattering to recognize vibration events induced by human locomotion. The DAS used in this work is based on homodyne phase-sensitive optical time-domain reflectometry (φ-OTDR). The signal-to-noise ratio (SNR) of the DAS was enhanced using femtosecond laser-induced artificial Rayleigh scattering centers in single-mode fiber cores. Both supervised and unsupervised machine-learning algorithms were explored to identify people and specific events that produce acoustic signals. Using convolutional deep neural networks, the supervised machine learning scheme achieved over 76.25% accuracy in recognizing human identities. Conversely, the unsupervised machine learning scheme achieved over 77.65% accuracy in recognizing events and human identities through acoustic signals. Through integrated efforts on both sensor device innovation and machine learning data analytics, this paper shows that the DAS technique can be an effective security technology to detect and to identify highly similar acoustic events with high spatial resolution and high accuracies.


Subject(s)
Biometric Identification/methods , Fiber Optic Technology/methods , Locomotion , Machine Learning , Acoustics/instrumentation , Biometric Identification/instrumentation , Fiber Optic Technology/instrumentation , Humans
4.
Sci Rep ; 10(1): 20167, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33214578

ABSTRACT

This paper presents a fibre cavity ring down spectroscopy probed by Rayleigh scattering optical frequency domain reflectometry (OFDR), which provides spatial location of stimuli and improved signal to noise ratio for distributed sensing measurements. A section of optical fibre was integrated into an active fibre ring cavity with optical gain and interrogated by the OFDR system for 11 cycles with a single laser scan. Through the cavity ring down configuration, root-mean-squared (RMS) noise of distributed temperature and strain measurements was reduced to 6.9 mK and less than 0.1 µÎµ, respectively for 1-cm spatially resolved measurements. Our work shows that the active fibre cavity configuration can be combined with distributed fibre sensing schemes to achieve both high spatial resolution and high sensitivity measurements.

5.
Light Sci Appl ; 9: 178, 2020.
Article in English | MEDLINE | ID: mdl-33088495

ABSTRACT

Thouless charge pumping protocols provide a route for one-dimensional systems to realize topological transport. Here, using arrays of evanescently coupled optical waveguides, we experimentally demonstrate bulk Thouless pumping in the presence of disorder. The degree of pumping is quite tolerant to significant deviations from adiabaticity as well as the addition of system disorder until the disorder is sufficiently strong to reduce the bulk mobility gap of the system to be on the scale of the modulation frequency of the system. Moreover, we show that this approach realizes near-full-unit-cell transport per pump cycle for a physically relevant class of localized initial system excitations. Thus, temporally pumped systems can potentially be used as a design principle for a new class of modulated slow-light devices that are resistant to system disorder.

6.
Opt Express ; 28(19): 27277-27292, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988024

ABSTRACT

This paper presents an integrated technical framework to protect pipelines against both malicious intrusions and piping degradation using a distributed fiber sensing technology and artificial intelligence. A distributed acoustic sensing (DAS) system based on phase-sensitive optical time-domain reflectometry (φ-OTDR) was used to detect acoustic wave propagation and scattering along pipeline structures consisting of straight piping and sharp bend elbow. Signal to noise ratio of the DAS system was enhanced by femtosecond induced artificial Rayleigh scattering centers. Data harnessed by the DAS system were analyzed by neural network-based machine learning algorithms. The system identified with over 85% accuracy in various external impact events, and over 94% accuracy for defect identification through supervised learning and 71% accuracy through unsupervised learning.

7.
Opt Express ; 28(14): 20225-20235, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680087

ABSTRACT

This paper presents a method of using femtosecond laser inscribed nanograting as low-loss- and high-temperature-stable in-fiber reflectors. By introducing a pair of nanograting inside the core of a single-mode optical fiber, an intrinsic Fabry-Perot interferometer can be created for high-temperature sensing applications. The morphology of the nanograting inscribed in fiber cores was engineered by tuning the fabrication conditions to achieve a high fringe visibility of 0.49 and low insertion loss of 0.002 dB per sensor. Using a white light interferometry demodulation algorithm, we demonstrate the temperature sensitivity, cross-talk, and spatial multiplexability of sensor arrays. Both the sensor performance and stability were studied from room temperature to 1000°C with cyclic heating and cooling. Our results demonstrate a femtosecond direct laser writing technique capable of producing highly multiplexable in-fiber intrinsic Fabry-Perot interferometer sensor devices with high fringe contrast, high sensitivity, and low-loss for application in harsh environmental conditions.

8.
Opt Lett ; 45(11): 3163-3166, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32479485

ABSTRACT

This Letter presents an approach to produce multiplexable optical fiber chemical sensor using an intrinsic Fabry-Perot interferometer (IFPI) array via the femtosecond laser direct writing technique. Using the hydrogen-sensitive palladium (Pd) alloy as a functional sensory material, Pd alloy coated IFPI devices can reproducibly and reversibly measure hydrogen concentrations with a detection limit of 0.25% at room temperature. Seven IFPI sensors were fabricated in one fiber and performed simultaneous temperature and hydrogen measurements at seven different locations. This Letter demonstrates a simple yet effective approach to fabricate multiplexable fiber optical chemical sensors for use in harsh environments.

9.
Opt Express ; 26(9): 11775-11786, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716096

ABSTRACT

This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 1014 n/cm2/s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 1020 n/cm2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.

10.
Sensors (Basel) ; 18(4)2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29649148

ABSTRACT

Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 µ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).

11.
Phys Rev Lett ; 120(6): 063902, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481241

ABSTRACT

We experimentally demonstrate topological edge states arising from the valley-Hall effect in two-dimensional honeycomb photonic lattices with broken inversion symmetry. We break the inversion symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron nitridelike band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zigzag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal-invariant photonic topological insulators.

12.
Nature ; 553(7686): 59-62, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300011

ABSTRACT

When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

13.
Sci Rep ; 7(1): 9360, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839282

ABSTRACT

This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

14.
ACS Sens ; 2(1): 87-91, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28722436

ABSTRACT

A distributed sensing capable high temperature D-shaped optical fiber modified with a palladium nanoparticle sensitized mesoporous (∼5 nm) TiO2 film, is demonstrated. The refractive index of the TiO2 film was reduced using block copolymer templating in order to realize a mesoporous matrix, accommodating integration with optical fiber. The constructed sensor was analyzed by performing direct transmission loss measurements, and by analyzing the behavior of an integrated fiber Bragg grating. The inscribed grating should reveal whether the refractive index of the composite film experiences changes upon exposure to hydrogen. In addition, with frequency domain reflectometry the distributed sensing potential of the developed sensor for hydrogen concentrations of up to 10% is examined. The results show the possibility of detecting chemical gradients with sub-cm resolution at temperatures greater than 500 °C.

15.
Nanotechnology ; 27(22): 225404, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27109121

ABSTRACT

We demonstrate that inverse woodpile and woodpile photonic crystal nanocrystalline silicon structures may be engineered for light trapping in solar cells. We use finite-difference tim-domain simulations to show that the geometry of these photonic crystals may be varied such that absorption in the infrared, visible, and ultraviolet parts of the spectrum may all be improved. The short-circuit current density and ultimate efficiency are also improved. We found a 77.1% and 106% absorption enhancement in the optimized inverse woodpile and woodpile structures respectively, compared to a nanocrystalline silicon thin film of the equivalent thickness. The inverse woodpile structures may be approximated as a thin film with effective index of refraction, whereas the woodpile structures exhibit resonances from the coupling of TE and TM leaky modes in the stacked cylinders. Woodpile photonic crystal structures exhibit improved performance compared to inverse woodpile structures over a range of equivalent thicknesses and incidence angles. The performance of woodpile structures is also generally insensitive to the diameter, pitch and number of layers, whereas inverse woodpile structures are much more sensitive to morphology.

16.
Opt Express ; 24(4): 3894-902, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907042

ABSTRACT

We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.

17.
Opt Express ; 23(17): 22532-43, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368220

ABSTRACT

This paper demonstrates the fabrication and measurements of flexible photonic lightwave circuits in glass substrates. Using temporally and spatially shaped ultrafast laser pulses, highly symmetrical and low-loss optical waveguides were written in flexible glass substrates with thicknesses ranging from 25 µm to 100 µm. The waveguide propagation loss, measured by optical frequency domain reflectometry, was 0.11 dB/cm at 1550 nm telecommunication wavelength. The bend loss of the waveguide is negligible at a radius of curvature of 1.5 cm or greater. Additionally, the waveguides are thermally stable up to 400°C. This paper presents alternatives to fabricating flexible photonics in traditionally used polymeric materials.

18.
Opt Lett ; 39(12): 3579-82, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24978541

ABSTRACT

Bragg waveguides are fundamental components in photonic integrated circuits and are particularly interesting for mid-IR applications in high index, highly nonlinear materials. In this work, we present Bragg waveguides fabricated in bulk chalcogenide glass using an ultrafast laser. Waveguides with near circularly symmetric cross sections and low propagation loss are obtained through spatial and temporal beam shaping. Using a single-pass technique, the waveguide and Bragg structure are formed at the same time. First through sixth order gratings with strengths of up to 25 dB are realized, and performance is evaluated based on the modulation duty cycle of the writing beam.

19.
Opt Lett ; 39(13): 3966-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24978783

ABSTRACT

This Letter presents an all-optical high-temperature flow sensor based on hot-wire anemometry. High-attenuation fibers (HAFs) were used as the heating elements. High-temperature-stable regenerated fiber Bragg gratings were inscribed in HAFs and in standard telecom fibers as temperature sensors. Using in-fiber light as both the heating power source and the interrogation light source, regenerative fiber Bragg grating sensors were used to gauge the heat transfer from an optically powered heating element induced by the gas flow. Reliable gas flow measurements were demonstrated between 0.066 m/s and 0.66 m/s from the room temperature to 800°C. This Letter presents a compact, low-cost, and multiflexible approach to measure gas flow for high-temperature harsh environments.

20.
Opt Express ; 22(3): 2665-74, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24663558

ABSTRACT

This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fiber integration. High-temperature stable fiber Bragg gratings inscribed in D-shaped fibers were used to perform real-time characterization of optical absorption and refractive index modulation of metal oxides in response to NH3 from the room temperature to 500 °C. Measurement results reveals that the redox reaction of the nanostructured metal oxides exposed to a reactive gas NH3 induces much stronger changes in optical absorption as opposed to changes in the refractive index. Results presented in this paper provide important guidance for fiber optic chemical sensing designs based on metal oxide nanomaterials.


Subject(s)
Fiber Optic Technology/instrumentation , Gases/analysis , Lenses , Metal Nanoparticles/chemistry , Refractometry/instrumentation , Tin Compounds/chemistry , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...