Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1237498, 2023.
Article in English | MEDLINE | ID: mdl-37691918

ABSTRACT

Introduction: Defective lymphatic drainage and translocation of B-cells in inflamed (Bin) joint-draining lymph node sinuses are pathogenic phenomena in patients with severe rheumatoid arthritis (RA). However, the molecular mechanisms underlying this lymphatic dysfunction remain poorly understood. Herein, we utilized multi-omic spatial and single-cell transcriptomics to evaluate altered cellular composition (including lymphatic endothelial cells, macrophages, B-cells, and T-cells) in the joint-draining lymph node sinuses and their associated phenotypic changes and cell-cell interactions during RA development using the tumor necrosis factor transgenic (TNF-Tg) mouse model. Methods: Popliteal lymph nodes (PLNs) from wild-type (n=10) and TNF-Tg male mice with "Early" (5 to 6-months of age; n=6) and "Advanced" (>8-months of age; n=12) arthritis were harvested and processed for spatial transcriptomics. Single-cell RNA sequencing (scRNAseq) was performed in PLNs from the TNF-Tg cohorts (n=6 PLNs pooled/cohort). PLN histopathology and ELISPOT along with ankle histology and micro-CT were evaluated. Histopathology of human lymph nodes and synovia was performed for clinical correlation. Results: Advanced PLN sinuses exhibited an increased Ighg2b/Ighm expression ratio (Early 0.5 ± 0.1 vs Advanced 1.4 ± 0.5 counts/counts; p<0.001) that significantly correlated with reduced talus bone volumes in the afferent ankle (R2 = 0.54, p<0.001). Integration of single-cell and spatial transcriptomics revealed the increased IgG2b+ plasma cells localized in MARCO+ peri-follicular medullary sinuses. A concomitant decreased Fth1 expression (Early 2.5 ± 0.74 vs Advanced 1.0 ± 0.50 counts, p<0.001) within Advanced PLN sinuses was associated with accumulation of iron-laden Prussian blue positive macrophages in lymph nodes and synovium of Advanced TNF-Tg mice, and further validated in RA clinical samples. T-cells were increased 8-fold in Advanced PLNs, and bioinformatic pathway assessment identified the interaction between ALCAM+ macrophages and CD6+ T-cells as a plausible co-stimulatory mechanism to promote IgG2b class-switching. Discussion: Collectively, these data support a model of flare in chronic TNF-induced arthritis in which loss of lymphatic flow through affected joint-draining lymph nodes facilitates the interaction between effluxing macrophages and T-cells via ALCAM-CD6 co-stimulation, initiating IgG2b class-switching and plasma cell differentiation of the expanded Bin population. Future work is warranted to investigate immunoglobulin clonality and potential autoimmune consequences, as well as the efficacy of anti-CD6 therapy to prevent these pathogenic events.


Subject(s)
Arthritis, Rheumatoid , Immunoglobulin Class Switching , Immunoglobulin G , Animals , Humans , Male , Mice , Activated-Leukocyte Cell Adhesion Molecule , Endothelial Cells , Multiomics
2.
Arthritis Res Ther ; 25(1): 17, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732826

ABSTRACT

BACKGROUND: Although treatment options and algorithms for rheumatoid arthritis (RA) have improved remarkably in recent decades, there continues to be no definitive cure or pharmacologic intervention with reliable long-term efficacy. For this reason, the combination of medications and healthy lifestyle modifications are essential for controlling joint disease, and extra-articular manifestations of RA, such as interstitial lung disease (ILD) and other lung pathologies, which greatly impact morbidity and mortality. Generally, exercise has been deemed beneficial in RA patients, and both patients and clinicians are motivated to incorporate effective non-pharmacologic interventions. However, there are limited evidence-based and specific exercise regimens available to support engagement in such activities for RA patients. Here, we provided the continuous opportunity for exercise to mice and implemented automated recording and quantification of wheel running behavior. This allowed us to describe the associated effects on the progression of inflammatory-erosive arthritis and ILD in the tumor necrosis factor transgenic (TNF-Tg) mouse model of RA. METHODS: Wild-type (WT; males, n=9; females, n=9) and TNF-Tg (males, n=12; females, n=14) mice were singly housed with free access to a running wheel starting at 2 months until 5 to 5.5 months of age. Measures of running included distance, rate, length, and number of run bouts, which were derived from continuously recorded data streams collected automatically and in real-time. In vivo lung, ankle, and knee micro-computed tomography (micro-CT), along with terminal micro-CT and histology were performed to examine the association of running behaviors and disease progression relative to sedentary controls. RESULTS: TNF-Tg males and females exhibited significantly reduced running distance, rate, length, and number of run bouts compared to WT counterparts by 5 months of age (p<0.0001). Compared to sedentary controls, running males and females showed increased aerated lung volumes (p<0.05) that were positively correlated with running distance and rate in female mice (WT: Distance, ρ=0.705/rate, ρ=0.693 (p<0.01); TNF-Tg: ρ=0.380 (p=0.06)/ρ=0.403 (p<0.05)). Talus bone volumes were significantly reduced in running versus sedentary males and negatively correlated with running distance and rate in TNF-Tg mice (male: ρ=-903/ρ=-0.865; female: ρ=-0.614/ρ=-0.594 (p<0.001)). Histopathology validated the lung and ankle micro-CT findings. CONCLUSIONS: Implementation of automated wheel running behavior metrics allows for evaluation of longitudinal activity modifications hands-off and in real-time to relate with biomarkers of disease severity. Through such analysis, we determined that wheel running activity increases aerated lung volumes, but exacerbates inflammatory-erosive arthritis in TNF-Tg mice. To the end of a clinically relevant model, additional functional assessment of these outcomes and studies of pain behavior are warranted.


Subject(s)
Arthritis, Rheumatoid , Lung Diseases, Interstitial , Animals , Female , Male , Mice , Mice, Transgenic , Motor Activity , X-Ray Microtomography , Tumor Necrosis Factors/metabolism
3.
Bone Rep ; 16: 101167, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35146075

ABSTRACT

INTRODUCTION: Micro-computed tomography (µCT) is a valuable imaging modality for longitudinal quantification of bone volumes to identify disease or treatment effects for a broad range of conditions that affect bone health. Complex structures, such as the hindpaw with up to 31 distinct bones in mice, have considerable analytic potential, but quantification is often limited to a single bone volume metric due to the intensive effort of manual segmentation. Herein, we introduce a high-throughput, user-friendly, and semi-automated method for segmentation of murine hindpaw µCT datasets. METHODS: In vivo µCT was performed on male (n = 4; 2-8-months) and female (n = 4; 2-5-months) C57BL/6 mice longitudinally each month. Additional 9.5-month-old male C57BL/6 hindpaws (n = 6 hindpaws) were imaged by ex vivo µCT to investigate the effects of resolution and integration time on analysis outcomes. The DICOMs were exported to Amira software for the watershed-based segmentation, and watershed markers were generated automatically at approximately 80% accuracy before user correction. The semi-automated segmentation method utilizes the original data, binary mask, and bone-specific markers that expand to the full volume of the bone using watershed algorithms. RESULTS: Compared to the conventional manual segmentation using Scanco software, the semi-automated approach produced similar raw bone volumes. The semi-automated segmentation also demonstrated a significant reduction in segmentation time for both experienced and novice users compared to standard manual segmentation. ICCs between experienced and novice users were >0.9 (excellent reliability) for all but 4 bones. DISCUSSION: The described semi-automated segmentation approach provides remarkable reliability and throughput advantages. Adoption of the semi-automated segmentation approach will provide standardization and reliability of bone volume measures across experienced and novice users and between institutions. The application of this model provides a considerable strategic advantage to accelerate various research opportunities in pre-clinical bone and joint analysis towards clinical translation.

SELECTION OF CITATIONS
SEARCH DETAIL
...