Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(16): 14730-14741, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37125136

ABSTRACT

In the thermal aging of nitroplasticizer (NP), the produced nitrous acid (HONO) can decompose into reactive nitro-oxide species and nitric acid (HNO3). These volatile species are prone to cause cascaded deterioration of NP and give rise to various acidic constituents. To gain insight on the early stage of NP degradation, an adequate method for measuring changes in the concentrations of HONO, HNO3, and related acidic species is imperative. The typical assessment of acidity in nonaqueous solutions (i.e., acid number) cannot differentiate acidic species and thus presents difficulty in the measurement of HONO and HNO3 at a micromolar concentration level. Using liquid-liquid extraction and ion chromatography (IC), we developed a fast and unambiguous analytical method to accurately determine the concentration of HONO, HNO3, acetic/formic acids, and oxalic acid in aged NP samples. Given by the overlay analysis results of liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and IC, the prominent increase of produced HONO after the depletion of antioxidants is the primary cause of HNO3 formation in the late stage of NP degradation, which results in the acid-catalyzed hydrolysis of NP into 2,2-dinitropropanol and acetic/formic acids. Our study has demonstrated that the aging temperature plays a crucial role in accelerating the formation and decomposition of HONO, which consequently increases the acidity of aged NP samples and hence accelerates the hydrolyzation of NP. Therefore, to prevent NP from undergoing rapid degradation, we suggest that the concentration of HNO3 should be maintained below 1.35 mM and the temperature under 38 °C.

2.
ACS Omega ; 7(39): 35316-35325, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211031

ABSTRACT

In the eutectic mixture of bis(2,2-dinitropropyl) acetal (BDNPA) and bis(2,2-dinitropropyl) formal (BDNPF), also known as nitroplasticizer (NP), n-phenyl-ß-naphthylamine (PBNA), an antioxidant, is used to improve the long-term storage of NP. PBNA scavenges nitrogen oxides (e.g., NO x radicals) that are evolved from NP decomposition, hence slowing down the degradation of NP. Yet, little is known about the associated chemical reaction between NP and PBNA. Herein, using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF), we thoroughly characterize nitrated PBNA derivatives with up to five NO2 moieties in terms of retention time, mass verification, fragmentation pattern, and correlation with NP degradation. The propagation of PBNA nitration is found to depend on the temperature and acidity of the NP system and can be utilized as an indirect, yet reliable, means of determining the extent of NP degradation. At low temperatures (<55 °C), we find that the scavenging efficiency of PBNA is nullified when three NO2 moieties are added to PBNA. Hence, the dinitro derivative can be used as a reliable indicator for the onset of hydrolytic NP degradation. At elevated temperatures (≥55 °C) and especially in the dry environment, the trace amount of water in the condensed NP (<700 ppm) is essentially removed, which accelerates the production of reactive species (e.g., HONO, HNO3 and NO x ). In return, the increased acidity due to HNO3 formation catalyzes the hydrolysis of NP and PBNA nitro derivatives into 2,2-dinitropropanol (DNPOH) and nitrophenol/dinitrophenol, respectively.

3.
ACS Omega ; 7(36): 32701-32707, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36119998

ABSTRACT

As an antioxidant, N-phenyl-ß-naphthylamine (PBNA) inhibits the activity of oxidants, such as NO x , to prevent the degradation of energetic materials. In the presence of NO x , nitrated products can be generated in the process potentially. To characterize nitrated PBNA in a nontargeted analysis of complex samples as such, liquid chromatography tandem quadrupole time-of-flight (LC-QTOF), as an excellent analytic technique, is used due to its high resolution and sensitivity. However, a systematic approach of instrumentation optimization, data interpretation, and quantitative determination of products is needed. Through a step-by-step evaluation of the instrumental parameters used in the Q0, Q1, and Q2 compartments of LC-QTOF, optimal ion yields of precursor ions and high-resolution MS2 fragmentation spectra at low mass defects were obtained in both negative and positive electrospray ionization modes. Through rationalization of the fragmentation pathways and verification using theoretical masses, the mononitro derivative of PBNA was accurately identified as N-(4-nitrophenyl)-naphthalen-2-amine and further confirmed using a reference standard. Using strict criteria provided by the analytical guidelines (e.g., SANTE), limit of quantitation, limit of detection, and calibration were established for the quantitation of PBNA and nitrated PBNA. From optimization to characterization and subsequent quantification of the mononitro-PBNA derivative, for the first time, the applicability of this strategy is demonstrated in the aged energetic binders.

SELECTION OF CITATIONS
SEARCH DETAIL
...