Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Colloids Surf B Biointerfaces ; 234: 113760, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244484

ABSTRACT

Recently, carbon quantum dots (CQDs) have become popular because of their simple synthesis and potential applications. Although CQDs have high biocompatibility, their biotoxicity must be verified to reduce the possible risks associated with large-scale application. In this study, the hepatotoxicity of three CQD types, namely diammonium citrate (AC)-based (CQDs-AC), spermidine trihydrochloride (Spd)-based (CQDs-Spd), and AC- and Spd-based CQDs (CQDs-AC/Spd), were evaluated in vivo and in vitro. It was observed in vivo that CQDs-Spd and CQDs-AC/Spd, but not CQDs-AC, caused histopathological damage, including liver steatosis and mild mixed inflammatory cell infiltration; however, reduced liver function was only observed in CQD-Spd-treated mice. The in vitro results revealed that only CQDs-Spd significantly decreased the number of viable HepG2 cells (NADH depletion) and induced oxidative stress (heme oxygenase-1 activation) after 24 h of exposure, which promoted inflammatory factor secretion (NF-κB activation). Additionally, decreasing zonula occludens-2 and α1-antitrypsin protein expression in HepG2 cells suggested that CQD-Spd exposure increases the risk of liver diseases. Our results revealed that CQDs-Spd had greater hepatotoxic potential than CQDs-AC and CQDs-AC/Spd, which might be attributable to their high positive surface charge. Overall, the risk of CQD-induced hepatotoxic risk must be considered when applying positively charged CQDs.


Subject(s)
Chemical and Drug Induced Liver Injury , Quantum Dots , Mice , Animals , Humans , Quantum Dots/toxicity , Carbon/pharmacology , Spermidine , Hep G2 Cells , Chemical and Drug Induced Liver Injury/etiology
2.
Arch Environ Contam Toxicol ; 85(4): 438-450, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37910195

ABSTRACT

The effects of atmospheric pollution from ship emissions have been considered for several harbors worldwide. The health risk assessment and source apportionment of particle-bound metals in a fishery harbor were investigated in this study. The most abundant metal elements in particulate matter (PM) on all sampling days in three seasons were Fe (280.94 ± 136.93 ng/m3), Al (116.40 ± 71.25 ng/m3), and Zn (110.55 ± 26.70 ng/m3). The ratios of V/Ni were 1.44 ± 0.31, 1.48 ± 0.09 and 1.87 ± 0.06 in PM10, PM2.5, and PM1, respectively. Meanwhile, the ratios higher than 1 indicated that fuel oil combustion from ship emission in fishery harbor. The highest deposits of total particle-bound metals in the human respiratory tract were in the head airway (HA), accounting for 76.77 ± 2.29% of the total particle-bound metal concentration, followed by 5.32 ± 0.13% and 2.53 ± 0.15% in the alveolar region (AR) and tracheobronchial (TB) region, respectively. The total cancer risk (CR) of inhalation exposure to local residents exceeded 10-6. Mean total CR values followed the sequence: autumn (1.24 × 10-4) > winter (8.53 × 10-5) > spring (2.77 × 10-6). Source apportionment of related metal emissions was mobile pollution emissions (vehicle/boat) (37.10-48.92%), metal fumes of arc welding exhaust (19.68-34.42%), spray-painting process (12.34-16.24%), combustion emissions (6.32-13.12%), and metal machining processes (9.04-16.31%) in Singda fishing harbor. These results suggest that proper control of heavy metals from each potential source in fishing harbor areas should be carried out to reduce the carcinogenic risk of adverse health effects.


Subject(s)
Air Pollutants , Metals, Heavy , Humans , Air Pollutants/analysis , Seasons , Fisheries , Environmental Monitoring , Particulate Matter/analysis , Metals, Heavy/analysis , Risk Assessment , China
3.
Water Environ Res ; 95(10): e10930, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37746676

ABSTRACT

In this study, the integration of carbon nanotube (CNT), graphene, and biochar (BC) with zinc oxide nanorods (ZnO NRs) was investigated for efficient water pollutant removal. Two types of ZnO NRs/BC hybrids (BC on top and bottom of ZnO NRs) were synthesized and compared to other carbon material-based ZnO NRs combinations. Methylene blue (MB) adsorption efficiency was evaluated for various carbon material-based ZnO NRs composites, revealing good performance in ZnO NRs/BC hybrids, particularly with BC on top. The adsorption efficiency reached an impressive 61.79% for ZnO NRs/BC, surpassing other configurations. MB removal by ZnO NRs/BC fitted well with pseudo-first-order kinetics and the rate constants of MB adsorption is 9.19 × 10-2 1/min (R2 = 0.9237). Surface characterizations revealed a distinctive distribution of BC grains, with denser aggregation observed on top of ZnO NRs. This unique distribution contributed to higher MB adsorption rates, substantiated by Fourier transform infrared spectroscopy (FTIR) analysis that showcased stronger MB adsorption in ZnO NRs/BC hybrids. Notably, the enhanced MB adsorption rates were attributed to the population of BC grains. This research establishes ZnO NRs/BC composites as promising candidates for effective water pollutant removal. The developed materials can be combined with the existed conventional wastewater treatment systems to further purify the water quality. PRACTITIONER POINTS: ZnO NRs/BC hybrids achieve a remarkable 61.79% efficiency in removing MB pollutants, surpassing other carbon materials. MB removal using BC-based materials follows pseudo-first-order kinetics. BC grains exhibit unique distribution patterns on ZnO NRs, with densely packed grains atop contributing to higher MB removal. FTIR analysis confirms increased MB-related bond vibration, supporting the effectiveness of ZnO NRs/BC hybrids for water pollutant removal.


Subject(s)
Environmental Pollutants , Nanotubes, Carbon , Water Pollutants, Chemical , Water Pollutants , Zinc Oxide , Zinc Oxide/chemistry , Methylene Blue/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
4.
Bioresour Technol ; 387: 129590, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37532059

ABSTRACT

In this study, different types of lignocellulosic biomas were used as substrates for the conversion to 5-HMF via biphasic reaction system that is composed of a reaction phase (aqueous phase) and an extraction phase (organic phase) under the catalysis of various metal salts. Deep eutectic solvents (DESs), ionic liquid [BMIM]Cl, aqueous choline chloride, aqueous betaine hydrochloride, and ethylamine hydrochloride were used as the reaction phase in the combination of dimethyl sulfoxide (DMSO) as organic solvents. The highest yields of 5-HMF obtained from pineapple stems in reactions with DES were 40.98%, 37.26%, and 23.44% for ChCl:Lac, ChCl:OA, and EaCl:Lac, respectively. Moreover, the combination of dimethyl sulfoxide, betaine hydrochloride aqueous solution, and AlCl3·6H2O with the pineapple stem conversion system resulted in a maximum yield of 61.04% ± 0.55% of 5-HMF. This study also demonstrated that AlCl3·6H2O and betaine hydrochloride could be effectively reused four times, which indicates a green and effective process.


Subject(s)
Betaine , Dimethyl Sulfoxide , Biomass , Solvents , Water
5.
Sci Total Environ ; 895: 165213, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37391157

ABSTRACT

To reduce the nanoplastics (NPs) toxicity assessment error, we established a Transwell-based bronchial epithelial cell exposure system to assess the pulmonary toxicity of polystyrene NPs (PSNPs). Transwell exposure system was more sensitive than submerged culture for toxicity detection of PSNPs. PSNPs adhered to the BEAS-2B cell surface, were ingested by the cell, and accumulated in the cytoplasm. PSNPs induced oxidative stress and inhibited cell growth through apoptosis and autophagy. A noncytotoxic dose of PSNPs (1 ng/cm2) increased the expression levels of inflammatory factors (ROCK-1, NF-κB, NLRP3, ICAM-1, etc) in BEAS-2B cells, whereas a cytotoxic dose (1000 ng/cm2) induced apoptosis and autophagy, which might inhibit the activation of ROCK-1 and contribute to reducing inflammation. In addition, the noncytotoxic dose increased the expression levels of zonula occludens-2 (ZO-2) and α1-antitrypsin (α-AT) proteins in BEAS-2B cells. Therefore, in response to PSNP exposure, a compensatory increase in the activities of inflammatory factors, ZO-2, and α-AT may be triggered at low doses as a mechanism to preserve the survival of BEAS-2B cells. In contrast, exposure to a high dose of PSNPs elicits a noncompensatory response in BEAS-2B cells. Overall, these findings suggest that PSNPs may be harmful to human pulmonary health even at an ultralow concentration.


Subject(s)
Lung Diseases , Polystyrenes , Humans , Polystyrenes/metabolism , Bronchi/metabolism , NF-kappa B , Epithelial Cells
6.
Chemosphere ; 333: 138954, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37201606

ABSTRACT

Groundwater contamination by chlorinated solvents causes potential threats to water resources and human health. Therefore, it is important to develop effective technologies to remediate contaminated groundwater. This study uses biodegradable hydrophilic polymers, hydroxypropyl methylcellulose (HPMC), hydroxyethyl cellulose (HEC) and polyvinyl pyrrolidone (PVP) as binders to manufacture persulfate (PS) tablets for the sustained release of persulfate to treat trichloroethylene (TCE) in groundwater. The release time for different tablets decreases in the order: HPMC (8-15 days) > HEC (7-8 days) > PVP (2-5 days). The efficiency with which persulfate is released is: HPMC (73-79%) > HEC (60-72%) > PVP (12-31%). HPMC is the optimal binder for the manufacture of persulfate tablets and persulfate is released from a tablet of HPMC/PS ratio (wt/wt) of 4/3 for 15 days at a release rate of 1127 mg/day. HPMC/PS/biochar (BC) ratios (wt/wt/wt) between 1/1/0.02 and 1/1/0.0333 are suitable for PS/BC tablets. PS/BC tablets release persulfate for 9-11 days at release rates of 1243 to 1073 mg/day. The addition of too much biochar weakens the structure of the tablets, which results in a rapid release of persulfate. TCE is oxidized by a PS tablet with an efficiency of 85% and a PS/BC tablet eliminates more TCE, with a removal efficiency of 100%, due to oxidation and adsorption during the 15 days of reaction. Oxidation is the predominant mechanism for TCE elimination by a PS/BC tablet. The adsorption of TCE by BC fits well with the pseudo-second-order kinetics and the pseudo-first-order kinetics, which describes the removal of TCE by PS and PS/BC tablets. The results of this study show that a PS/BC tablet can be used in a permeable reactive barrier for long-term passive remediation of groundwater.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Humans , Trichloroethylene/chemistry , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Groundwater/chemistry
7.
Chemosphere ; 313: 137582, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36529175

ABSTRACT

Microplastics (MPs) have emerged as a global concern, with a recent study being the first to detect them in the bloodstream of healthy people. However, precise information regarding the toxic effects of MPs on the human vascular system is currently lacking. In this study, we used human vascular endothelial EA. hy926 cells to examine the toxic potential of polystyrene MPs (PSMPs) under realistic blood concentrations. Our findings indicated that PSMPs can cause oxidative stress by reducing the expression of antioxidants, thereby leading to apoptotic cytotoxicity in EA. hy926 cells. Furthermore, the protective potential of heat shock proteins can be reduced by PSMPs. PSMP-induced apoptosis might also lower the expression of rho-associated protein kinase-1 and nuclear factor-κB expression, thus dampening LRR- and pyrin domain-containing protein 3 in EA. hy926 cells. Moreover, we observed that PSMPs induce vascular barrier dysfunction via the depletion of zonula occludens-1 protein. However, although protein expression of the nuclear hormone receptor 77 was inhibited, no significant increase in ectin-like oxidized low-density lipoprotein receptor-1 was noted in PSMP-treated EA. hy926 cells. These results demonstrate that exposure to PSMPs may not sufficiently increase the risk of developing atherosclerosis. Overall, our research signifies that exposure to realistic blood concentrations of PSMPs is associated with low atherosclerotic cardiovascular risk in humans.


Subject(s)
Microplastics , Polystyrenes , Humans , Microplastics/toxicity , Microplastics/metabolism , Polystyrenes/metabolism , Plastics/metabolism , Endothelial Cells/metabolism , Oxidative Stress
8.
Membranes (Basel) ; 12(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557163

ABSTRACT

Pharmaceutical and personal care products are frequently used in various fields and released into water bodies from the outlets of wastewater treatment plants. These products can harm the environment and human health even at low concentrations. Carbamazepine (CBZ), the most persistent pharmaceutical, has frequently been found in surface waters that bypassed the secondary treatments of conventional activated sludge. In addition, the treatment of phosphate in wastewater by the electrochemical process has recently attracted much attention because of its ability to remove, recover, and prevent environmental problems associated with eutrophication. This study proposes using the electrochemical process as an advanced oxidation process to simultaneously treat CBZ and phosphate from the moving-bed membrane bioreactor effluent. The study includes a long-term survey of CBZ treatment efficiency and common parameters of synthetic wastewater in the moving-bed membrane bioreactor system. Afterward, the electrochemical process is applied as an advanced oxidation process for the simultaneous removal of CBZ and phosphate from the moving-bed membrane bioreactor. Under the investigated conditions, CBZ has proven not to be an inhibitor of microbial activity, as evidenced by the high extent of chemical oxygen demand and nutrient removal. Using a factorial design, the electrochemical process using Pt/Ti as anode and cathode under optimal conditions (reaction time-80 min, bias potential-3 V, and electrode distance-1 cm) resulted in as high as 56.94% CBZ and 95.95% phosphate removal, respectively. The results demonstrated the ability to combine an electrochemical and a moving-bed membrane bioreactor process to simultaneously remove CBZ and phosphate in wastewater.

9.
Membranes (Basel) ; 12(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35448390

ABSTRACT

Pharmaceuticals and personal care products have raised significant concerns because of their extensive use, presence in aquatic environments, and potential impacts on wildlife and humans. Carbamazepine was the most frequently detected pharmaceutical residue among pharmaceuticals and personal care products. Nevertheless, the low removal efficiency of carbamazepine by conventional wastewater treatment plants was due to resistance to biodegradation at low concentrations. A membrane bioreactor (MBR) has recently attracted attention as a new separation process for wastewater treatment in cities and industries because of its effectiveness in separating pollutants and its tolerance to high or shock loadings. In the current research, the main and interaction effects of three operating parameters, including hydraulic retention time (12-24 h), dissolved oxygen (1.5-5.5 mg/L), and sludge retention time (5-15 days), on removing carbamazepine, chemical oxygen demand, ammonia nitrogen, and phosphorus using ceramic membranes was investigated by applying a two-level full-factorial design analysis. Optimum dissolved oxygen, hydraulic retention time, and sludge retention time were 1.7 mg/L, 24 h, and 5 days, respectively. The research results showed the applicability of the MBR to wastewater treatment with a high carbamazepine loading rate and the removal of nutrients.

10.
Chemosphere ; 295: 133906, 2022 May.
Article in English | MEDLINE | ID: mdl-35143855

ABSTRACT

In this study, a biodegradable binder, hydroxypropyl methyl cellulose (HPMC), was used for the first time to mix with persulfate powder for developing novel persulfate-releasing tablets to remediate trichloroethylene (TCE)-contaminated groundwater. To obtain feasible parameters for the preparation of persulfate tablets, different pressures, HPMC/tablet mass ratios, and persulfate dosages were evaluated. The results showed that the persulfate tablet released 2868 mg-persulfate/day for 12 days under the optimal manufacturing parameters of HPMC/tablet mass ratio of 0.5 and pressure of 4.90 × 108 N/m2. Persulfate diffusion and gel layer erosion were dominant mechanisms for controlling the persulfate released in water. The persulfate release time and rate can be controlled by adjusting the persulfate dosage at the optimal HPMC/tablet ratio. In the column experiment, TCE with an initial concentration of 70 mg/L reached 55% removal efficiency by the tablet, which showed that the developed tablet was capable of degrading highly concentrated TCE. The results of electron spin resonance (ESR) spectroscopy showed that both SO4-· and ·OH were responsible for the oxidation of TCE. During 150 days of incubation, the biodegrading efficiency of HPMC by microbes in soil and activated sludge was 67% and 80%, respectively, under aerobic conditions, while 58% of HPMC was removed by soil bacteria under anaerobic conditions. The results showed that persulfate tablets could be used as a passive groundwater remediation system. There is no waste generated after persulfate is completely released during groundwater remediation. The developed persulfate tablets are environmentally friendly and meet the green remediation aspect.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Groundwater/chemistry , Soil/chemistry , Tablets , Trichloroethylene/chemistry , Water Pollutants, Chemical/analysis
11.
Water Environ Res ; 94(1): e1673, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34861087

ABSTRACT

In this study, the emulsified castor oil (ECO) substrate was developed for a long-term supplement of biodegradable carbon with pH buffering capacity to anaerobically bioremediate trichloroethylene (TCE)-polluted groundwater. The ECO was produced by mixing castor oil, surfactants (sapindales and soya lecithin [SL]), vitamin complex, and a citrate/sodium phosphate dibasic buffer system together for slow carbon release. Results of the emulsification experiments and microcosm tests indicate that ECO emulsion had uniform small droplets (diameter = 539 nm) with stable oil-in-water characteristics. ECO had a long-lasting, dispersive, negative zeta potential (-13 mv), and biodegradable properties (viscosity = 357 cp). Approximately 97% of TCE could be removed with ECO supplement after a 95-day operational period without the accumulation of TCE dechlorination byproducts (dichloroethylene and vinyl chloride). The buffer system could neutralize acidified groundwater, and citrate could be served as a primary substrate. ECO addition caused an abrupt TCE adsorption at the initial stage and the subsequent removal of adsorbed TCE. Results from the next generation sequences and real-time polymerase chain reaction (PCR) indicate that the increased microbial communities and TCE-degrading bacterial consortia were observed after ECO addition. ECO could be used as a pH-control and carbon substrate to enhance anaerobic TCE biodegradation effectively. PRACTITIONER POINTS: Emulsified castor oil (ECO) contains castor oil, surfactants, and buffer for a slow carbon release and pH control. ECO can be a long-term carbon source for trichloroethylene (TCE) dechlorination without causing acidification. TCE removal after ECO addition is due to adsorption and reductive dechlorination mechanisms.


Subject(s)
Groundwater , Trichloroethylene , Biodegradation, Environmental , Carbon , Castor Oil , Hydrogen-Ion Concentration
12.
J Hazard Mater ; 427: 127871, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34862106

ABSTRACT

As microplastics (MPs) dispersed into the environment, people might be exposed to MPs. Most pollutants either pass through or concentrate in the kidney. Therefore, nephrotoxicity tests are needed to verify the toxic potential of MPs. Here we used human embryonic kidney 293 (HEK293) cells to determine the association between nephrotoxicity and round-shape polystyrene MPs (PSMPs) (3.54 ± 0.39 µm) under realistic environmental exposure concentrations. Results revealed that PSMPs can adhere to the cell membrane and get entirely engulfed by HEK293 cells. PSMPs can induce cytotoxicity by oxidative stress via inhibition of the antioxidant haem oxygenase-1. Depolarisation of the mitochondrial membrane potential and formation of autophagosomes confirmed that apoptosis and autophagy can be simultaneously induced by PSMPs. The inflammatory factor was only activated (33 cytokines) by noncytotoxic concentration of PSMPs (3 ng/mL); however, the cytotoxic concentration (300 ng/mL) of PSMPs induced autophagy, which might further reduce NLRP3 expression, thus contributing to dampening inflammation (35 cytokines) in HEK293 cells. PSMPs (300 ng/mL) can impair kidney barrier integrity and increase the probability of developing acute kidney injury through the depletion of the zonula occludens-2 proteins and α1-antitrypsin. Altogether, our results demonstrated that environmental exposure to PSMPs may lead to an increased risk of renal disease.


Subject(s)
Microplastics , Water Pollutants, Chemical , HEK293 Cells , Humans , Oxidative Stress , Plastics , Polystyrenes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
13.
Environ Pollut ; 273: 116528, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33486253

ABSTRACT

HKUST-1 is currently studied for a very diverse range of applications. Despite its exciting potential, significant concerns remain regarding the safety of HKUST-1. Therefore, human embryonic kidney 293 (HEK293) cells were used to verify the renal toxicity of HKUST-1. In this study, HKUST-1 induced concentration-dependent cytotoxic effects in HEK293 cells. The depolarization of mitochondrial membrane potential and formation of apoptotic bodies and autophagic vesicles were observed in HKUST-1-treated HEK293 cells. Oxidative (oxidative stress and haem oxygenase-1 activation) and inflammatory responses (NF-κB and NLRP3 activation) in HEK293 cells were induced by HKUST-1 exposure. In addition, the observed reduction in NAD(P)H levels in HKUST-1-treated HEK293 cells may be attributable to PARP-1 activation following DNA single- and double-strand breaks. The HKUST-1-induced depletion of zonula occludens proteins in HEK293 cells might lead to altered renal barrier integrity. The variations of α1-antitrypsin, oxidised α1-antitrypsin and NLRP3 protein expression in HEK293 cells suggested that HKUST-1 increases the risk of chronic kidney diseases. However, most of these adverse effects were significantly induced only by high HKUST-1 concentration (100 µg/mL), which do not reflect the actual exposure. Thus, the toxic risk of HKUST-1 appears to be negligible.

14.
Chemosphere ; 263: 128349, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297274

ABSTRACT

Biochars (BCs) are currently widely used, yet their impact on human health is mostly unknown. We generated micro-tobacco stem-pyrolysed BCs (mTBCs) at different pyrolysis temperatures and assessed pulmonary toxicity in normal human lung epithelial BEAS-2B cells. mTBCs generated at 350 °C (mTBC350) and 650 °C (mTBC650) were analysed and compared for physicochemical properties and adverse effects. Pyrolysis temperature had a significant influence on chemical composition, particle size, specific surface area and aromatic carbon structure. mTBC650 displayed a highly ordered aromatic carbon structure with smaller particle size, high surface area (20.09 m2/g) and high polycyclic aromatic hydrocarbon and metal content. This composition could promote reactive oxygen species accumulation accompanied by greater cytotoxicity, genotoxicity and epithelial barrier malfunction in cultured cells. Thus, the risk of pulmonary toxicity owing to micro-BCs (mBCs) is affected by pyrolysis temperature. Long-term exposure to mBCs produced at high temperatures may lead to or exacerbate pulmonary disease.


Subject(s)
Nicotiana , Pyrolysis , Charcoal , Hot Temperature , Humans , Temperature
15.
Chemosphere ; 264(Pt 1): 128407, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33022502

ABSTRACT

Silver deposited titanate nanotube array composite (Ag/TNA-c) was successfully synthesized using tea leaves and ground coffee as reducing agent for the first time. The synthesis method was effective, eco-friendly, and reproducible in producing quality nano-composite. The Ag/TNA composite was characterized via XPS, SEM, UV-vis, XRD, and electrochemical analyses for chemical and physical properties. Additionally, chlorogenic acid, caffeine, and catechin were selected as reducing agents for purpose of comparison. Results indicated that catechin and chlorogenic acid were the main reducing agents responsible for Ag+ reduction in tea leaves and ground coffee, respectively. The synthesized Ag/TNA-c exhibited the best photocatalytic (PC) performance in terms of photo-current response, EIS, Ibuprofen degradation, and hydrogen generation in a PEC system. Pairing with a Pt cathode, the photoelectrochemical (PEC) system using the synthesized Ag/TNA composite photo-anode, was capable of concurrent anodic oxidation of Ibuprofen and cathodic generation of hydrogen. Deposition of nano-Ag particles on TNA enhanced the concurrent oxidation and reduction reaction in the PEC system. Results of ESR analysis confirmed the role of hydroxyl radical on Ibuprofen degradation over Ag/TNA-c in the PEC system. Mechanism of Ag/TNA PEC system was proposed to illustrate the oxidation and reduction reaction.


Subject(s)
Nanotubes , Titanium , Family Characteristics , Hydrogen , Ibuprofen , Silver
16.
Environ Sci Pollut Res Int ; 28(30): 40640-40652, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32743699

ABSTRACT

Health effects resulting from the smoke of carbonyl compounds (aldehydes and ketones) and metal-containing incense particles at temples during incense burning periods were evaluated at temple A (without incense reduction activities) and B (with incense reduction activities), Nantou County, in 2018. The predominant size fractions of particles were PM1, PM1-2.5, and PM2.5-10 at both temples. The total particle mass at temple A was approximately 1.1 times that of temple B due to incense reduction at temple B. The most abundant metal elements in all particle size fractions at both temples were Fe, Al, and Zn. Metal species of incense smoke are divided into three groups by hierarchical cluster analysis and heatmaps, showing higher metal contents in groups PM1, PM18-10, and PM18-2.5 at temple A. In contrast, higher metal contents were observed in PM18-10 and PM2.5-1 at temple B. Most of the carbonyl species were formaldehyde and acetaldehyde, released during incense burning periods, with concentrations ranging from 6.20 to 13.05 µg/m3 at both temples. The total deposited fluxes of particle-bound metals at temples A and B were determined to be 83.00% and 84.82% using the International Commission on Radiological Protection (ICRP) model. Health-risk assessments revealed that the risk values of metals and carbonyls were above recommended guidelines (10-6) at temple A. Since worshippers and staff are exposed to incense burning environments with poor ventilation over a long period, these toxic organic compounds and metals increase health risks in the respiratory tract. Therefore, incense reduction is important to achieve healthy temple environments.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Formaldehyde , Humans , Particle Size , Risk Assessment , Smoke
17.
Chemosphere ; 254: 126796, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32335441

ABSTRACT

Chlorine-containing organic compounds were discharged informally as a result of untreated industrial wastewater, which caused groundwater pollution. In this study, titanium dioxide nanotube arrays (TNAs) were modified with copper oxide to photoelectrochemical (PEC) active persulfate to degrade trichloroethylene (TCE). The SEM results show copper nano-particles with a cubic shape were successfully deposited on the surface of TNAs. The results of UV-vis analysis indicate the absorption wavelengths red-shift to 550-600 nm for better light utilization. CuO/TNAs were dominated by the anatase phase after sintering at 450 °C with significant visible light response. The chemical contents for the surface of CuO/TNAs are 23.7, 53.4, 18.4 and 4.4% for C, O, Ti and Cu, respectively. The photocurrent of CuO/TNAs is 1.89 times higher than that of TNAs-93 cm^2-1hr under 100 W Hg-lamp illuminations. This demonstrates the efficiency of light utilization of TNAs was improved by the modification with copper nanoparticles. The degradation rate of TCE in the anodic chamber is more effective than that in the cathodic chamber because of the synergistic effect of hydroxyl and sulfate radicals. The mechanism of TCE degradation via persulfate in the PEC system was proposed and discussed in detail.


Subject(s)
Photochemical Processes , Sulfates/chemistry , Trichloroethylene/chemistry , Copper , Electrodes , Groundwater , Nanotubes/chemistry , Titanium , Wastewater
18.
Environ Sci Pollut Res Int ; 27(28): 34760-34769, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31889286

ABSTRACT

In this study, a farmland contaminated by heavy metals (Cu, Zn, Ni, and Cr) was selected to evaluate the performance of poly-γ-glutamic acid (γ-PGA) on the removal of heavy metals in soil washing. The highest heavy metal concentrations at the contaminated site were Cu: 1180 mg/kg, Zn: 1450 mg/kg, Ni: 287 mg/kg, and Cr: 316 mg/kg. Batch experiments designed by Taguchi Method were conducted first to assess the effect of different washing conditions on the removal of heavy metals in laboratory. The results of batch experiments show that factors that affected the removal efficiency of heavy metals was of the order γ-PGA concentration > washing time > liquid/soil ratio > rotational speed. The optimal operating parameters for heavy metal removal were γ-PGA 3.5%, liquid/soil ratio 15/1, washing time 60 min, and rotational speed 100 rpm. Under the optimal conditions, up to 50.7% of the major target metal, Cu, was removed. Heavy metals in the soil were mainly Fe-Mn oxide bound and organically bound. On-site treatment using the optimal operating parameters caused 54.3% of Cu removal. When the soil was washed 3 times by γ-PGA, the removal efficiency of Cu was improved to 74.3%. After the treatment, the change in soil bacterial number was insignificant, indicating that γ-PGA is an environmentally friendly washing reagent.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Glutamic Acid , Polyglutamic Acid/analogs & derivatives , Soil
19.
Environ Sci Pollut Res Int ; 26(33): 34157-34166, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30456616

ABSTRACT

Dispersants including Tween 20, Tween 40, Tween 60, and polyacrylic acid (PAA) were used to modify nanoscale zero-valent iron (nZVI). All dispersants dispersed nZVI effectively. PAA-modified nZVI was more stable than nZVI that was modified with Tween surfactant. Iron nanoparticles that were prepared using 0.5-5.0% (vol%) of PAA remained in suspension for more than 2 h. nZVI that was modified using Tween surfactant remained in suspension for 30-60 min, and there was complete sedimentation of bare iron in 10 min. When 2.0-5.0% (vol%) of Tween surfactant was used, the stability of the nZVI that was modified using Tween 20 was much better than that for nZVI that was modified using Tween 40 or Tween 60. The results for the transportation test show that nZVI that was prepared using 2% (vol%) of Tween 20 exhibited the best mobility in porous media. Approximately 83-90% of TCE was degraded by bare, PAA-modified, and Tween 20-modified nZVI, and about 63-67% of TCE was removed by nZVI that was modified using Tween 40 and Tween 60 during 20 days of reaction. The production of cis-dichloroethene (DCE) and 1,1-DCE demonstrates that TCE is removed via reductive dechlorination. The results of this study show that PAA- and Tween 20-modified nZVI are more practical for in situ remediation because they exhibit good mobility and degrade TCE effectively.


Subject(s)
Metal Nanoparticles/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Acrylic Resins , Halogenation , Iron , Models, Chemical , Polysorbates/metabolism , Porosity , Surface-Active Agents , Suspensions
20.
Sci Total Environ ; 633: 1198-1205, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29758872

ABSTRACT

This study employed BiOI-deposited TiO2 nanotube arrays (BiOI-TNTAs) electrode in a photoelectrochemical (PEC) system to oxidize Ibuprofen and generate hydrogen in the anodic and cathodic chamber, respectively. FESEM results revealed the diameter of TiO2 nanotubes was 90-110nm. According to the XRD analysis, the BiOI-TNTAs were dominated by the anatase phase and tetragonal structure of BiOI. XPS results confirmed the coexistence of BiOI in the BiOI-TNTAs associated with Bi (33.76%) and I (8.81%). UV-vis absorption spectra illustrated BiOI-TNTAs exhibit strong absorptions in the visible light region. The PEC method showed the best degradation efficiency for Ibuprofen is a rate constant of 3.21×10-2min-1. The results of the Nyquist plot revealed the recombination of photogenerated electron-hole pairs was inhibited as the bias potential was applied. Furthermore, the Bode plot demonstrated the lifetime (τel) of photoexcited electrons of BiOI-TNTAs was 1.8 and 4.1 times longer than that of BiOI-Ti and TNTAs, respectively. In the cathodic chamber, the amount of hydrogen generation reached 219.94µM/cm2 after 3h of reaction time.


Subject(s)
Electrochemical Techniques , Ibuprofen/chemistry , Models, Chemical , Nanotubes/chemistry , Titanium/chemistry , Electrodes , Hydrogen/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...