Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888392

ABSTRACT

This study constructed a two-dimensional alkaline water electrolyzer model based on the two-phase flow Euler-Euler model. In the model, the micro-nano surface electrodes with different structure types and graphic parameters (distance, height, and width) were used and compared with the vertical flat electrode to evaluate their influence on electrolysis performance. The simulation results show that the performance of the micro-nano surface electrode is much better than that of the vertical flat electrode. The total length of micro-nano structural units relates to the contact area between the electrode and the electrolyte and affects the cell voltage, overpotential, and void fraction. When rectangular structural units with a distance, height, and width of 0.5 µm, 0.5 µm, and 1 µm are used, the total length of the corresponding micro-nano surface electrode is three times that of the vertical flat electrode, and the cathode overpotential decreases by 65.31% and the void fraction increases by 54.53% when it replaces the vertical flat electrode.

2.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322012

ABSTRACT

When exposed to sunlight, crystalline silicon solar cells (CSSC) will not only generate electric energy but are also heated by solar radiation. Such a self-heating effect makes the working temperature of CSSC 20-40 °C higher than that of the ambient temperature, which degrades their efficiency and reliability. The elevated operating temperatures of CSSC are mainly derived from absorbing photons that cannot be converted to electrons. Therefore, it is important to prevent CSSC from absorbing useless solar light to have a better cooling effect. In this paper, photonic structures based spectrum-selective mirror is designed to cool the operating temperatures of CSSC passively. The mirror could make CSSC absorb about 93% of the sunlight in the wavelength range of 0.3 to 1.1 µm and only absorb about 4% of the sunlight in the wavelength range of 1.1 to 2.5 µm. Meanwhile, the design has good compatibility with the radiative cooling strategy. By applying selective-absorptive and radiative cooling strategies, the operating temperature of CSSC could be decreased about 23.2 K and 68.1 K under different meteorological conditions. Moreover, unlike the single radiative cooling strategy, the spectrum-selective mirror also has effective cooling effects in high wind speed meteorological conditions.

3.
Entropy (Basel) ; 22(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-33286536

ABSTRACT

The comprehensive utilization technology of combined cooling, heating and power (CCHP) systems is the leading edge of renewable and sustainable energy research. In this paper, we propose a novel CCHP system based on a hybrid trigenerative compressed air energy storage system (HT-CAES), which can meet various forms of energy demand. A comprehensive thermodynamic model of the HT-CAES has been carried out, and a thermodynamic performance analysis with energy and exergy methods has been done. Furthermore, a sensitivity analysis and assessment capacity for CHP is investigated by the critical parameters effected on the performance of the HT-CAES. The results indicate that round-trip efficiency, electricity storage efficiency, and exergy efficiency can reach 73%, 53.6%, and 50.6%, respectively. Therefore, the system proposed in this paper has high efficiency and flexibility to jointly supply multiple energy to meet demands, so it has broad prospects in regions with abundant solar energy resource.

SELECTION OF CITATIONS
SEARCH DETAIL
...