Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Article in English | MEDLINE | ID: mdl-38448252

ABSTRACT

Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.

2.
Acta Pharmacol Sin ; 45(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37674042

ABSTRACT

Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.


Subject(s)
Parkinson Disease , Rats , Mice , Animals , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , Iron/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Dopamine/metabolism , Cellular Senescence , Disease Models, Animal
3.
Acta Pharmacol Sin ; 45(1): 52-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37674043

ABSTRACT

Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Male , Rotenone/toxicity , Neuroinflammatory Diseases , PPAR gamma , Mice, Inbred C57BL , Parkinson Disease/pathology , Substantia Nigra/pathology , Dopaminergic Neurons/pathology , Inflammation/pathology , Iron , Disease Models, Animal
4.
Sci Adv ; 9(17): eadg0654, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37115931

ABSTRACT

Immune-responsive gene 1 (IRG1) encodes aconitate decarboxylase (ACOD1) that catalyzes the production of itaconic acids (ITAs). The anti-inflammatory function of IRG1/ITA has been established in multiple pathogen models, but very little is known in cancer. Here, we show that IRG1 is expressed in tumor-associated macrophages (TAMs) in both human and mouse tumors. Mechanistically, tumor cells induce Irg1 expression in macrophages by activating NF-κB pathway, and ITA produced by ACOD1 inhibits TET DNA dioxygenases to dampen the expression of inflammatory genes and the infiltration of CD8+ T cells into tumor sites. Deletion of Irg1 in mice suppresses the growth of multiple tumor types and enhances the efficacy of anti-PD-(L)1 immunotherapy. Our study provides a proof of concept that ACOD1 is a potential target for immune-oncology drugs and IRG1-deficient macrophages represent a potent cell therapy strategy for cancer treatment even in pancreatic tumors that are resistant to T cell-based immunotherapy.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Humans , Animals , Mice , Tumor-Associated Macrophages/metabolism , CD8-Positive T-Lymphocytes/metabolism , Macrophages/metabolism , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Hydro-Lyases/genetics
5.
Nat Cell Biol ; 24(3): 353-363, 2022 03.
Article in English | MEDLINE | ID: mdl-35256775

ABSTRACT

As one of the most induced genes in activated macrophages, immune-responsive gene 1 (IRG1) encodes a mitochondrial metabolic enzyme catalysing the production of itaconic acid (ITA). Although ITA has an anti-inflammatory property, the underlying mechanisms are not fully understood. Here we show that ITA is a potent inhibitor of the TET-family DNA dioxygenases. ITA binds to the same site on TET2 as the co-substrate α-ketoglutarate, inhibiting TET2 catalytic activity. Lipopolysaccharide treatment, which induces Irg1 expression and ITA accumulation, inhibits Tet activity in macrophages. Transcriptome analysis reveals that TET2 is a major target of ITA in suppressing lipopolysaccharide-induced genes, including those regulated by the NF-κB and STAT signalling pathways. In vivo, ITA decreases the levels of 5-hydroxymethylcytosine, reduces lipopolysaccharide-induced acute pulmonary oedema as well as lung and liver injury, and protects mice against lethal endotoxaemia, depending on the catalytic activity of Tet2. Our study thus identifies ITA as an immune modulatory metabolite that selectively inhibits TET enzymes to dampen the inflammatory responses.


Subject(s)
Dioxygenases , Animals , DNA , Dioxygenases/metabolism , Lipopolysaccharides/toxicity , Mice , Succinates/metabolism , Succinates/pharmacology
6.
World J Pediatr ; 18(2): 100-108, 2022 02.
Article in English | MEDLINE | ID: mdl-34988851

ABSTRACT

BACKGROUND: Preterm infants with long-term parenteral nutrition (PN) therapy are at risk for cholestasis associated with total parenteral nutrition (PNAC). This study examined the safety and efficacy of ursodeoxycholic acid (UDCA) in preventing PNAC in preterm infants. Our research aimed to investigate the prophylactic effect of preventive oral UDCA on PNAC in preterm infants. METHODS: We compared oral administration of UDCA prophylaxis with no prophylaxis in a randomized, open-label, proof-of-concept trial in preterm neonates with PN therapy. The low-birth-weight preterm infants (< 1800 g) who were registered to the neonatal intensive care unit (NICU) within 24 hours after birth were randomized. The main endpoint was the weekly values of direct bilirubin (DB) of neonates during the NICU stay. RESULTS: Eventually, a total of 102 preterm neonates from January 2021 to July 2021 were enrolled in this prospective study (42 in the UDCA group and 60 in the control group). Notably, the peak serum level of DB [13.0 (12-16) vs. 15.2 (12.5-19.6) µmol/L, P < 0.05)] was significantly lower in the UDCA group than that in the control group without prevention. The peak serum level of total bilirubin (101.1 ± 34 vs. 116.5 ± 28.7 µmol/L, P < 0.05) was also significantly lower in the UDCA group than in the control group. Furthermore, the proportion of patients who suffered from neonatal cholestasis (0.0% vs. 11.7%, P < 0.05) in the UDCA group was significantly lower. CONCLUSION: UDCA prophylaxis is beneficial in preventing PNAC in NICU infants receiving prolonged PN.


Subject(s)
Cholestasis , Ursodeoxycholic Acid , Cholestasis/etiology , Cholestasis/prevention & control , Humans , Infant , Infant, Newborn , Infant, Premature , Parenteral Nutrition, Total , Prospective Studies , Retrospective Studies , Ursodeoxycholic Acid/therapeutic use
7.
Front Cardiovasc Med ; 8: 751519, 2021.
Article in English | MEDLINE | ID: mdl-34765657

ABSTRACT

Background: Obstructive sleep apnea is an atherogenesis factor of which chronic intermittent hypoxia is a prominent feature. Chronic intermittent hypoxia (CIH) exposure can sufficiently activate the sympathetic system, which acts on the ß3 adrenergic receptors of brown adipose tissue (BAT). However, the activity of BAT and its function in CIH-induced atherosclerosis have not been fully elucidated. Methods: This study involved ApoE-/- mice which were fed with a high-fat diet for 12 weeks and grouped into control and CIH group. During the last 8 weeks, mice in the CIH group were housed in cages to deliver CIH (12 h per day, cyclic inspiratory oxygen fraction 5-20.9%, 180 s cycle). Atherosclerotic plaques were evaluated by Oil Red O, hematoxylin and eosin, Masson staining, and immunohistochemistry. Afterward, we conducted immunohistochemistry, western blotting, and qRT-PCR of uncoupling protein 1 (UCP1) to investigate the activation of BAT. The level of serum total cholesterol (TC), triglyceride, low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and free fatty acid (FFA) were measured. Finally, RNA-Sequencing was deployed to explore the differentially expressed genes (DEGs) and their enriched pathways between control and CIH groups. Results: Chronic intermittent hypoxia exposure promoted atherosclerotic plaque area with increasing CD68, α-SMA, and collagen in plaques. BAT activation was presented during CIH exposure with UCP1 up-regulated. Serum TC, triglyceride, LDL-c, and FFA were increased accompanied by BAT activation. HDL-c was decreased. Mechanistically, 43 lipolysis and lipid metabolism-associated mRNA showed different expression profiling between the groups. Calcium, MAPK, and adrenergic signaling pathway included the most gene number among the significantly enriched pathways. Conclusion: This study first demonstrated that BAT activation is involved in the progression of CIH-induced atherosclerosis, possibly by stimulating lipolysis.

8.
World J Clin Cases ; 9(26): 7845-7849, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34621836

ABSTRACT

BACKGROUND: Chronic active Epstein-Barr virus infection (EBV) is a systemic EBV-positive lymphoproliferative disease, which may lead to fatal illness. There is currently no standard treatment regimen for chronic active EBV (CAEBV), and hematopoietic stem cell transplantation is the only effective treatment. We here report a CAEBV patient treated with PEG-aspargase, who achieved negative EBV-DNA. CASE SUMMARY: A 33-year-old female Chinese patient who had fever for approximately 3 mo was admitted to our hospital in December 2017. EBV-DNA was positive with a high copy number. She was diagnosed with chronic active EB virus infection. PEG-aspargase was administered at a dose of 1500 U/m2 at a 14-d interval, resulting in eradication of EBV for more than 6 mo. The effect of PEG-aspargase in this patient was excellent. CONCLUSION: A chemotherapy regimen containing PEG-aspargase for CAEBV may be further considered.

9.
Sci Adv ; 6(38)2020 09.
Article in English | MEDLINE | ID: mdl-32948596

ABSTRACT

TET2 DNA dioxygenase is frequently mutated in human hematopoietic malignancies and functionally inactivated in many solid tumors through a nonmutational mechanism. We recently found that TET2 mediates the interferon-JAK-STAT pathway to stimulate chemokine expression and tumor infiltration of lymphocytes (TILs). TET2 is monoubiquitylated at K1299, which promotes its activity. Here, we report that USP15 is a TET2 deubiquitinase and inhibitor. USP15 catalyzes the removal of K1299-linked monoubiquitin and negatively regulates TET2 activity. Gene expression profiling demonstrates that TET2 and USP15 oppositely regulate genes involved in multiple inflammatory pathways, and TET2 is a major target of USP15 function. Deletion of Usp15 in melanoma stimulates chemokine expression and TILs in a TET2-dependent manner, leading to increased response to immunotherapy and extended life span of tumor-bearing mice. These results reveal a previously unknown regulator of TET2 activity and suggest USP15 as a potential therapeutic target for immunotherapy of solid tumors.

10.
Nature ; 582(7813): 492-494, 2020 06.
Article in English | MEDLINE | ID: mdl-32572248
11.
ACS Chem Neurosci ; 10(2): 863-871, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30590010

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SNpc). Although both iron accumulation and a defective autophagy-lysosome pathway contribute to the pathological development of PD, the connection between these two causes is poorly documented. The autophagy-lysosome pathway not only responds to regulation by iron chelators and channels but also participates in cellular iron recycling through the degradation of ferritin and other iron-containing components. Previously, ferritin has been posited to be the bridge between iron accumulation and autophagy impairment in PD. In addition, iron directly interacts with α-synuclein in Lewy bodies, which are primarily digested through the autophagy-lysosome pathway. These findings indicate that some link exists between iron deposition and autophagy impairment in PD. In this review, the basic mechanisms of the autophagy-lysosome pathway and iron trafficking are introduced, and then their interaction under physiological conditions is explained. Finally, we finish by discussing the dysfunction of iron deposition and autophagy in PD, as well as their potential relationship, which will provide some insight for further study.


Subject(s)
Autophagy/physiology , Iron Chelating Agents/therapeutic use , Iron/blood , Lysosomes/metabolism , Parkinson Disease/blood , Signal Transduction/physiology , Animals , Humans , Iron Chelating Agents/pharmacology , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy
12.
Cell Rep ; 25(6): 1485-1500.e4, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30404004

ABSTRACT

The TET2 DNA dioxygenase regulates gene expression by catalyzing demethylation of 5-methylcytosine, thus epigenetically modulating the genome. TET2 does not contain a sequence-specific DNA-binding domain, and how it is recruited to specific genomic sites is not fully understood. Here we carried out a mammalian two-hybrid screen and identified multiple transcriptional regulators potentially interacting with TET2. The SMAD nuclear interacting protein 1 (SNIP1) physically interacts with TET2 and bridges TET2 to bind several transcription factors, including c-MYC. SNIP1 recruits TET2 to the promoters of c-MYC target genes, including those involved in DNA damage response and cell viability. TET2 protects cells from DNA damage-induced apoptosis dependending on SNIP1. Our observations uncover a mechanism for targeting TET2 to specific promoters through a ternary interaction with a co-activator and many sequence-specific DNA-binding factors. This study also reveals a TET2-SNIP1-c-MYC pathway in mediating DNA damage response, thereby connecting epigenetic control to maintenance of genome stability.


Subject(s)
DNA Damage/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Intracellular Signaling Peptides and Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Biocatalysis/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , DNA Breaks, Double-Stranded , DNA-Binding Proteins/chemistry , Dioxygenases , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Protein Binding/drug effects , Proto-Oncogene Proteins/chemistry , RNA-Binding Proteins , Transcription, Genetic/drug effects
13.
Life Sci ; 215: 128-135, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30473024

ABSTRACT

OBJECTIVES: Apolipoprotein A-1 (ApoA-1) is involved in regulating both lipid and energy metabolism, which may play important roles in liver regeneration, especially for the liver with steatosis. We here intended to investigate the role of ApoA-1 in regeneration of small-for-size fatty liver graft and to explore the underlying mechanism. METHODS: The association of ApoA-1 expression with liver regeneration was studied in rat liver transplantation models using small-for-size normal graft or small-for-size fatty graft. The direct role of ApoA-1 in liver regeneration was studied in mouse hepatectomy model in vivo and hepatocytes in vitro. RESULTS: Compared to small-for-size normal graft, decreased expression of ApoA-1 associated with delayed regeneration were detected in small-for-size fatty liver graft after transplantation. In functional study, the expression of ApoA-1 was decreased in hepatocytes with steatosis and was inversely associated with the concentration of oleic acid. The ApoA-1 administration effectively attenuated hepatocytes steatosis and accelerated hepatocytes proliferation. In mouse model, ApoA-1 treatment promoted liver regeneration at day 2 after major hepatectomy. In addition, the treatment of ApoA-1 increased the expressions of PGC-1α and its target genes Tfam, Ucp2 and SDHB. CONCLUSIONS: ApoA-1 may accelerate regeneration of small-for-size fatty liver graft at day 2 after transplantation through regulating mitochondrial function. ApoA-1 may be the potential new therapy of promoting liver regeneration.


Subject(s)
Apolipoprotein A-I/metabolism , Fatty Liver/metabolism , Fatty Liver/surgery , Liver Regeneration , Liver Transplantation , Liver/surgery , Animals , Apolipoprotein A-I/genetics , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Fatty Liver/genetics , Hep G2 Cells , Hepatectomy , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Rats
14.
EMBO Rep ; 19(5)2018 05.
Article in English | MEDLINE | ID: mdl-29491006

ABSTRACT

Peroxisomes account for ~35% of total H2O2 generation in mammalian tissues. Peroxisomal ACOX1 (acyl-CoA oxidase 1) is the first and rate-limiting enzyme in fatty acid ß-oxidation and a major producer of H2O2 ACOX1 dysfunction is linked to peroxisomal disorders and hepatocarcinogenesis. Here, we show that the deacetylase sirtuin 5 (SIRT5) is present in peroxisomes and that ACOX1 is a physiological substrate of SIRT5. Mechanistically, SIRT5-mediated desuccinylation inhibits ACOX1 activity by suppressing its active dimer formation in both cultured cells and mouse livers. Deletion of SIRT5 increases H2O2 production and oxidative DNA damage, which can be alleviated by ACOX1 knockdown. We show that SIRT5 downregulation is associated with increased succinylation and activity of ACOX1 and oxidative DNA damage response in hepatocellular carcinoma (HCC). Our study reveals a novel role of SIRT5 in inhibiting peroxisome-induced oxidative stress, in liver protection, and in suppressing HCC development.


Subject(s)
Acyl-CoA Oxidase/antagonists & inhibitors , Acyl-CoA Oxidase/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Oxidative Stress , Sirtuins/metabolism , Acyl-CoA Oxidase/genetics , Animals , DNA Damage , Down-Regulation , Female , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Peroxide , Male , Mice , Mice, Knockout , Middle Aged , Oxidation-Reduction , Peroxisomes/chemistry , Prognosis , Sirtuins/genetics
15.
Int Orthop ; 42(1): 133-139, 2018 01.
Article in English | MEDLINE | ID: mdl-29167942

ABSTRACT

PURPOSE: The purpose of this study was to investigate the collapse progression in different morphologies of the necrotic-viable interface in osteonecrosis of the femoral head (ONFH). METHODS: A total of 168 patients (202 hips) with Association Research Circulation Osseous (ARCO) stage II ONFH were included. Ending with the collapse of the femoral head, all patients received conservative treatment but without surgical intervention and were followed for three to 91 months. Bilateral hip-joint radiographs and magnetic resonance imaging (MRI) were examined, and the largest layer of necrosis within the coronal section of MRI images was selected together with its anteroposterior radiograph to observe the morphology of the necrotic-viable interface. The morphology was divided into four types: I, type transverse; II, type "V"; III, type zigzag; IV, type closed. The collapse rate and the time to collapse in different morphologies were assessed. RESULTS: A total of 120 hips collapsed in two years or less, 61 were type-I, 51 were type-II, and 8 were type-III. Non-collapse occurred in all 17 hips with type-IV ONFH during long-term follow-up. In 202 hips with ARCO stage-II ONFH, the collapse rate in type-I ONFH was significantly higher than that of type-II and type-III ONFH (P < 0.01 for both). The time to collapse was markedly shortened. CONCLUSIONS: The risk of ONFH-induced collapse is influenced by the morphology of the necrotic-viable interface. Effective mechanical support for preventing the collapse of the femoral head is necessary when the morphology of the necrotic-viable interface is type transverse.


Subject(s)
Femur Head Necrosis/complications , Femur Head/pathology , Hip Joint/pathology , Adolescent , Adult , Aged , Disease Progression , Female , Femur Head/diagnostic imaging , Femur Head/surgery , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/pathology , Follow-Up Studies , Hip Joint/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis , Young Adult
16.
Oncotarget ; 8(61): 104238-104246, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29262636

ABSTRACT

BACKGROUND: Previous studies have shown that tumor-associated tissue eosinophilia have a role in various types of solid tumors. However, the relationship between eosinophil and acute ischemic stroke (AIS) is unclear. We aimed to investigate the diagnostic significance of eosinophil in AIS patients. METHODS: This study included 300 AIS patients without hypereosinophilic syndrome (HES). The hematologic indices were collected from each patient, including white blood count, eosinophil count, eosinophil percentage, neutrophil count, red blood count, and platelet. The severity of AIS was estimated by national institute of health stroke scale (NIHSS). Logistic regression analyses were performed to confirm the biomarkers for NIHSS and in-hospital non-death among the cases. Moreover, receiver-operating characteristics (ROC) analyses were used to investigate the clinical performances of eosinophils and NIHSS in prediction of non-death. RESULTS: The admission NIHSS (P<0.001) and BMI (P<0.001) were predictors to the non-death of the patients. There was a significant correlation between eosinophil counts or eosinophil percentage and NIHSS score (r= -0.451, P < 0.001; r= -0.617, P<0.001, Spearson Correlation). ROC analysis showed that eosinophil counts and eosinophil percentage could predict non-death of the patients in-hospital, with the areas under the curves (AUC) of 0.791 and 0.867, respectively. CONCLUSIONS: Our study revealed a relationship between eosinophil and NIHSS score in the patients with AIS. Eosinophils might have certain value for predicting the severity of AIS.

17.
Org Lett ; 19(22): 6044-6047, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29087716

ABSTRACT

An efficient and practical Cu(I)-catalyzed oxidative cyclization cascade reaction of diverse amines, alkyne esters and maleimides has been developed. The reactions can afford 4,6-dioxopyrrolo[3,4-b]pyrrole-2,3-dicarboxylates and related derivatives with satisfactory yields by altering the reaction conditions slightly. The substrate scope highlights the flexibility of the catalyst, and a reaction mechanism is also proposed.

18.
Autophagy ; 13(12): 2028-2040, 2017.
Article in English | MEDLINE | ID: mdl-28980867

ABSTRACT

Alzheimer disease (AD) is the most common neurodegenerative disease characterized by the deposition of amyloid plaque in the brain. The autophagy-associated PIK3C3-containing phosphatidylinositol 3-kinase (PtdIns3K) complex has been shown to interfere with APP metabolism and amyloid beta peptide (Aß) homeostasis via poorly understood mechanisms. Here we report that NRBF2 (nuclear receptor binding factor 2), a key component and regulator of the PtdIns3K, is involved in APP-CTFs homeostasis in AD cell models. We found that NRBF2 interacts with APP in vivo and its expression levels are reduced in hippocampus of 5XFAD AD mice; we further demonstrated that NRBF2 overexpression promotes degradation of APP C-terminal fragments (APP-CTFs), and reduces Aß1-40 and Aß1-42 levels in human mutant APP-overexpressing cells. Conversely, APP-CTFs, Aß1-40 and Aß1-42 levels were increased in Nrbf2 knockdown or nrbf2 knockout cells. Furthermore, NRBF2 positively regulates autophagy in neuronal cells and NRBF2-mediated reduction of APP-CTFs levels is autophagy dependent. Importantly, nrbf2 knockout attenuates the recruitment of APP and APP-CTFs into phagophores and the sorting of APP and APP-CTFs into endosomal intralumenal vesicles, which is accompanied by the accumulation of the APP and APP-CTFs into RAB5-positive early endosomes. Collectively, our results reveal the potential connection between NRBF2 and the AD-associated protein APP by showing that NRBF2 plays an important role in regulating degradation of APP-CTFs through modulating autophagy.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Autophagy , Peptide Fragments/metabolism , Proteolysis , Transcription Factors/metabolism , Animals , Autophagy-Related Proteins , Disease Models, Animal , Endosomes/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Humans , Mice, Transgenic , Models, Biological , Neurons/metabolism , Protein Binding , Trans-Activators
19.
Autophagy ; 13(11): 1969-1980, 2017.
Article in English | MEDLINE | ID: mdl-28933595

ABSTRACT

Recent studies have demonstrated that dysregulation of macroautophagy/autophagy may play a central role in the pathogenesis of neurodegenerative disorders, and the induction of autophagy protects against the toxic insults of aggregate-prone proteins by enhancing their clearance. Thus, autophagy has become a promising therapeutic target against neurodegenerative diseases. In this study, quantitative phosphoproteomic profiling together with a computational analysis was performed to delineate the phosphorylation signaling networks regulated by 2 natural neuroprotective autophagy enhancers, corynoxine (Cory) and corynoxine B (Cory B). To identify key regulators, namely, protein kinases, we developed a novel network-based algorithm of in silico Kinome Activity Profiling (iKAP) to computationally infer potentially important protein kinases from phosphorylation networks. Using this algorithm, we observed that Cory or Cory B potentially regulated several kinases. We predicted and validated that Cory, but not Cory B, downregulated a well-documented autophagy kinase, RPS6KB1/p70S6K (ribosomal protein S6 kinase, polypeptide 1). We also discovered 2 kinases, MAP2K2/MEK2 (mitogen-activated protein kinase kinase 2) and PLK1 (polo-like kinase 1), to be potentially upregulated by Cory, whereas the siRNA-mediated knockdown of Map2k2 and Plk1 significantly inhibited Cory-induced autophagy. Furthermore, Cory promoted the clearance of Alzheimer disease-associated APP (amyloid ß [A4] precursor protein) and Parkinson disease-associated SNCA/α-synuclein (synuclein, α) by enhancing autophagy, and these effects were dramatically diminished by the inhibition of the kinase activities of MAP2K2 and PLK1. As a whole, our study not only developed a powerful method for the identification of important regulators from the phosphoproteomic data but also identified the important role of MAP2K2 and PLK1 in neuronal autophagy.


Subject(s)
Amyloid beta-Peptides/metabolism , Autophagy/physiology , Cell Cycle Proteins/metabolism , Neurons/pathology , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Autophagy/drug effects , Computer Simulation , Indoles/pharmacology , MAP Kinase Kinase 2/metabolism , Mice , Neurodegenerative Diseases/metabolism , Neurons/drug effects , Neurons/metabolism , PC12 Cells , Phosphorylation , Proteome/metabolism , Rats , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Spiro Compounds/pharmacology , alpha-Synuclein/metabolism , Polo-Like Kinase 1
20.
Sci Rep ; 7: 44954, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28703181

ABSTRACT

To investigate the relationship between Helicobacter pylori (Hp) infection and the long-term outcome in acute coronary syndrome (ACS) patients with drug-eluting stent (DES) implantation and so as to explore the significance of Hp eradication therapy in preventing major adverse cardiac events (MACE) and upper gastrointestinal bleeding (UGIB). 539 ACS patients with DES implantation from January 1, 2010 to December 31, 2012 were analyzed. All the patients were divided into two groups according to the result of 13C urea breath test. 253 patients with Hp infection were put into group A (Hp+), and 286 cases without Hp infection were put into group B (Hp-). Demographic data was collected and all patients went through biochemical indicators and other routine blood examinations. We explored the correlations of Hp infection with MACE and UGIB after 3 to 5 years of follow-up using survival analysis. Survival analysis showed that Hp infection was a predictor of MACE and UGI. Sub-group analysis showed that patients with Hp eradication therapy had no relationship with MACE but had a lower rate of UGIB than those without Hp eradication therapy.


Subject(s)
Acute Coronary Syndrome/complications , Acute Coronary Syndrome/mortality , Drug-Eluting Stents , Helicobacter Infections/complications , Helicobacter pylori , Percutaneous Coronary Intervention , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/therapy , Aged , Comorbidity , Coronary Angiography , Female , Follow-Up Studies , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Patient Outcome Assessment , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL
...