Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1401414, 2024.
Article in English | MEDLINE | ID: mdl-38872889

ABSTRACT

The AT-hook motif nuclear localized (AHL) gene family is a highly conserved transcription factors involved in plant growth, development, and stress responses. However, AHLs have not been systematically analyzed in radish (Raphanus sativus). Therefore, we performed genome-wide identification and expression pattern, gene structure, and function verifications of radish AHLs. We identified 52 radish AHLs (RsAHL1-RsAHL52), which were unevenly distributed across nine chromosomes. Phylogenetic analysis showed that the RsAHLs were divided into two clades (A and B) and subdivided into three types (I, II, and III). Collinearity analysis revealed that the 52 RsAHLs produced 49 repeat events. Tissue expression profiles revealed differential expression of RsAHLs across different tissues, with higher expression observed in flower organs, particularly petals and anthers. qRT-PCR results indicated that RsAHLs responded to abscisic acid, methyl jasmonate, and abiotic stress (low and high temperatures and drought). Additionally, RsAHL14 induced a dwarf phenotype in tomato plants, and RsAHL14-overexpression tomato plants presented significantly decreased expression levels of the gibberellin (GA) synthetic genes ent-Copalyl diphosphatase, GA3ox-3/-4/-5, and GA20ox-1/-2/-3, but significantly increased expression of the degradation gene GA2ox-1/-3. Thus, RsAHL14 might affect plant growth by regulating GA content. Collectively, our study comprehensively identified RsAHLs in radish and provided a reference for further research on these genes.

2.
J Environ Sci (China) ; 24(4): 632-9, 2012.
Article in English | MEDLINE | ID: mdl-22894097

ABSTRACT

Dry deposition velocity of total suspended particles (TSP) is an effective parameter that describes the speed of atmospheric particulate matter deposit to the natural surface. It is also an important indicator to the capacity of atmosphere self-depuration. However, the spatial and temporal variations in dry deposition velocity of TSP at different urban landscapes and the relationship between dry deposition velocity and the meteorological parameters are subject to large uncertainties. We concurrently investigated this relationship at four different landscapes of Guangzhou, from October to December of 2009. The result of the average dry deposition velocity is (1.49 +/- 0.77), (1.44 +/- 0.77), (1.13 +/- 0.53) and (1.82 +/- 0.82) cm/sec for urban commercial landscape, urban forest landscape, urban residential landscape and country landscape, respectively. This spatial variation can be explained by the difference of both particle size composition of TSP and meteorological parameters of sampling sites. Dry deposition velocity of TSP has a positive correlation with wind speed, and a negative correlation with temperature and relative humidity. Wind speed is the strongest factor that affects the magnitude of TSP dry deposition velocity, and the temperature is another considerable strong meteorological factor. We also find out that the relative humidity brings less impact, especially during the dry season. It is thus implied that the current global warming and urban heat island effect may lead to correlative changes in TSP dry deposition velocity, especially in the urban areas.


Subject(s)
Desiccation , Meteorological Concepts , Particulate Matter/analysis , China , Geography , Humidity , Regression Analysis , Suspensions , Temperature , Wind
SELECTION OF CITATIONS
SEARCH DETAIL