Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798413

ABSTRACT

Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.

2.
J Appl Clin Med Phys ; 24(9): e14010, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37170691

ABSTRACT

BACKGROUND: Extended field-of-view (eFOV) methods have been proposed to generate larger demonstration FOVs for computed tomography (CT) simulators with a limited scanning FOV (sFOV) size in order to ensure accurate dose calculation and patient collision avoidance. Although the efficacy of these strategies has been evaluated for photon applications, the effect of stopping power ratio (SPR) estimation on proton therapy has not been studied. This study investigated the effect of an eFOV approach on the accuracy of SPR to water estimation in homogeneous and heterogeneous phantoms. MATERIALS AND METHODS: To simulate patient geometries, tissue-equivalent material (TEM) and customized extension phantoms were used. The TEM phantom supported various rod arrangements through predefined holes. Images were reconstructed to three FOV sizes using a commercial eFOV technique. A single-energy CT stoichiometric method was used to generate Hounsfield unit (HU) to SPR (HU-to-SPR) conversion curves for each FOV. To investigate the effect of rod location in the sFOV and eFOV regions, eight TEM rods were placed at off-center distances in the homogeneous phantom and scanned individually. Similarly, 16 TEM rods were placed in the heterogeneous TEM phantom and scanned simultaneously. RESULTS: The conversion curves derived from the sFOV and eFOV data were identical. The average SPR differences of soft-tissue, bone, and lung materials for rods placed at various off-center locations were 3.3%, 4.8%, and 39.6%, respectively. In the heterogeneous phantom, the difference was within 1.0% in the absence of extension. However, in the presence of extension, the difference increased to 2.8% for all rods, except for lung materials, whose difference was 4.8%. CONCLUSIONS: When an eFOV method is used, the SPR variation in phantoms considerably increases for all TEM rods, especially for lung TEM rods. This phenomenon may substantially increase the uncertainty of HU-to-SPR conversion. Therefore, image reconstruction with a standard FOV size is recommended.


Subject(s)
Proton Therapy , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Bone and Bones , Image Processing, Computer-Assisted/methods
3.
Biomater Adv ; 146: 213282, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634378

ABSTRACT

Multidrug resistance (MDR) has been considered as a major adversary in oncologic chemotherapy. To simultaneously overcome drug resistance and inhibit tumor growth, it is essential to develop a drug delivery system that can carry and release multiple therapeutic agents with spatiotemporal control. In this study, we developed a hydrogel containing an enzyme-cleavable peptide motif, with a network structure formed by 4-armed polyethylene glycol (PEG) crosslinked by complementary nucleic acid sequences. Hydrogen bond formation between nucleobase pairing allows the hydrogel to be injectable, and the peptide motif grants deliberate control over hydrogel degradation and the responsive drug release. Moreover, MDR-targeted siRNAs are complexed with stearyl-octaarginine (STR-R8), while doxorubicin (Dox) is intercalated with DNA and nanoclay structures in this hydrogel to enhance therapeutic efficacy and overcome MDR. The results show a successful configuration of a hydrogel network with in situ gelation property, injectability, and degradability in the presence of tumor-associated enzyme, MMP-2. The synergistic effect by combining MDR-targeted siRNAs and Dox manifests with the enhanced anti-cancer effect on drug resistant breast cancer cells in both in vitro and in vivo tumor models. We suggest that with the tailor-designed hydrogel system, multidrug resistance in tumor cells can be significantly inhibited by the co-delivery of multiple therapeutics with spatial-temporal control release.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , Hydrogels , Neoplasms , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Hydrogels/pharmacology , Neoplasms/drug therapy , RNA, Small Interfering , Humans
4.
J Mater Chem B ; 9(3): 567-584, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33289776

ABSTRACT

During nervous system development, an extracellular matrix (ECM) plays a pivotal role through surface topography and microenvironment signals in neurons and neurites maturation. Topography and microenvironment signals act as physical and chemical guiding cues, respectively, for neural tissue formation and reconstruction. Imposed surface topography can affect neural stem cells by promoting adhesion, spreading, alignment, morphological changes, and specific gene expression. Therefore, fabrication of a biomimetic construct or scaffold to support neurite outgrowth and axon extension is a crucial and common strategy for neural tissue regeneration. Here, we review recent developments in biomaterials modification for simulating the microenvironment to promote neural cell adhesion and growth. The subtopics include those of potential cellular mechanisms of topographical response, topography on cellular organization and function, contact guidance in neurite outgrowth and axon growth, ECM microenvironment as regulatory cues, as well as challenges and future perspectives of nerve conduits that are now in clinical trials and usage.


Subject(s)
Biocompatible Materials/chemistry , Extracellular Matrix/chemistry , Neurons/chemistry , Tissue Engineering , Animals , Biocompatible Materials/chemical synthesis , Cell Adhesion , Cell Proliferation , Humans , Neurons/cytology , Particle Size , Surface Properties
5.
Theranostics ; 9(23): 7072-7087, 2019.
Article in English | MEDLINE | ID: mdl-31660087

ABSTRACT

Critical challenges still exist in surgical theaters and emergency rooms to stop bleeding effectively and facilitate wound healing efficiently. In circumstances of tissue ischemia, it is essential to induce proper angiogenesis to provide adequate vascular supply to the injury site. Methods: In view of these clinical unmet needs, we propose an applicable approach by designing functionalized self-assembling peptide (SAP) hydrogel with two sequences of RADA16-GGQQLK (QLK) and RADA16-GGLRKKLGKA (LRK) in this study. The SAP hydrogel conjugated with QLK functional motif could be crosslinked by endogenous transglutaminase, one of the intrinsic factors secreted during the coagulation process, the mechanical property of the hydrogel can then be enhanced without the need of external support. On the other hand, the LRK sequence exhibited a good binding affinity with the proteoglycan heparan sulfate and could act as a cofactor by sustaining the release of embedded growth factors. Results: The results showed that this SAP solution underwent self-assembling process in a physiological environment, formed hydrogel in situ, and possessed good shear thinning property with injectability. After pH adjustment, the SAP developed densely-compacted fiber entanglement that closely mimicked the three-dimensional fibrous framework of natural extracellular matrix. Such scaffold could not only support the survival of encapsulating cells but also promote the capillary-like tubular structure formation by dual angiogenic growth factors. The ex ovo chicken chorioallantoic membrane assay demonstrated that the growth factor-loaded hydrogel promoted the sprout of surrounding vessels in a spoke-wheel pattern compared to growth factor-free counterparts. Conclusion: The designer bioinspired SAP hydrogel may be an attractive and promising therapeutic modality for minimally-invasive surgery, ischemic tissue disorders and chronic wound healing.


Subject(s)
Angiogenesis Inducing Agents/administration & dosage , Drug Delivery Systems/methods , Neovascularization, Physiologic/drug effects , Peptides/chemistry , Animals , Chick Embryo , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Drug Delivery Systems/instrumentation , Humans , Hydrogels/administration & dosage , Hydrogels/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Peptides/administration & dosage , Proteoglycans/chemistry
6.
Radiother Oncol ; 125(2): 248-257, 2017 11.
Article in English | MEDLINE | ID: mdl-29056290

ABSTRACT

BACKGROUND AND PURPOSE: Irradiating glioblastoma preoperative edema (PE) remains controversial. We investigated the associations between tumors' PE extent with invasion into synchronous subventricular zone and corpus callosum (sSVZCC) and treatment outcomes to provide the clinical evidence for radiotherapy decision-making. MATERIAL AND METHODS: Extensive PE (EPE) was defined as PE extending ≥2 cm from the tumor edge and extensive progressive disease (EPD) as tumors spreading ≥2 cm from the preoperative tumor edge along PE. The survival and progression patterns were analyzed according to EPE and sSVZCC invasion. RESULTS: In total, 136 patients were followed for a median of 74.9 (range, 47.6-102.1) months. The median overall survival and progression-free survival were 19.7 versus 28.6 months (p = 0.005) and 11.0 versus 17.4 months (p = 0.011) in patients with EPE+ versus EPE-, and were 18.7 versus 25.4 months (p = 0.021) and 10.7 versus 14.6 months (p = 0.020) in those with sSVZCC+ versus sSVZCC-. The EPD rates for tumors with EPE-/sSVZCC-, EPE-/sSVZCC+, EPE+/sSVZCC-, and EPE+/sSVZCC+ were 2.8%, 7.1%, 37.0%, and 71.9%, respectively. In EPE+/sSVZCC+, tumor migration was associated with the PE extending along the corpus callosum (77.8%) and subventricular zone (50.0%). CONCLUSIONS: Our results support the need for developing individualized irradiation strategies for glioblastomas according to EPE and sSVZCC.


Subject(s)
Brain Neoplasms/radiotherapy , Corpus Callosum/pathology , Edema/pathology , Glioblastoma/radiotherapy , Lateral Ventricles/pathology , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Corpus Callosum/diagnostic imaging , Disease Progression , Disease-Free Survival , Female , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Humans , Lateral Ventricles/diagnostic imaging , Male , Middle Aged , Neoplasm Invasiveness , Neoplasms, Multiple Primary , Treatment Outcome
7.
Nanoscale ; 9(42): 16281-16292, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29046917

ABSTRACT

Brain injury is a devastating medical condition and represents a major health problem. Tissue and organ reconstruction have been regarded as promising therapeutic strategies. Here, we propose a regenerative methodology focusing on the provision of functionalized nanopeptide scaffolds to facilitate angiogenesis and neurogenesis at the brain injury site. The peptide RADA16-SVVYGLR undergoes self-assembly to construct an interconnected network with intertwining nanofibers, and can be controlled to display various physicochemical properties by the adjustment of microenvironmental factors such as pH and ion concentration. Such scaffolds can support endothelial cells to form tube-like structures and neural stem cells to survive and proliferate. In an in vivo zebrafish brain injury model, sprouting angiogenesis and developmental neurogenesis were achieved, and functional recovery of the severed optic tectum was enhanced in RADA16-SVVYGLR hydrogel-implanted zebrafish. This nanopeptide hydrogel was non-toxic to zebrafish embryos during early developmental stages. This angiogenic self-assembling peptide hydrogel had programmable physical properties, good biocompatibility, and regenerative ability for functional recovery in the injured brain. We suggest that functionalized self-assembling peptides encapsulated with neural stem cells or used alone could be an attractive and effective therapeutic modality for brain injury and diseases (e.g., trauma, stroke, tumor, degenerative neurological disorders, etc.).


Subject(s)
Hydrogels , Nanofibers/chemistry , Neovascularization, Physiologic/drug effects , Neurogenesis/drug effects , Peptides/chemistry , Tissue Scaffolds , Animals , Central Nervous System , Embryo, Nonmammalian , Regeneration , Zebrafish
8.
Acta Biomater ; 58: 54-66, 2017 08.
Article in English | MEDLINE | ID: mdl-28606810

ABSTRACT

Breast cancer has become the second leading cause of cancer-related mortality in female wherein more than 90% of breast cancer-related death results from cancer metastasis to distant organs at advanced stage. The purpose of this study is to develop biodegradable nanoparticles composed of natural polypeptides and calcium phosphate (CaP) with sequential pH-responsivity to tumor microenvironments for active targeted drug delivery. Two different amphiphilic copolymers, poly(ethylene glycol)3400-aconityl linkage-poly(l-glutamic acid)15-poly(l-histidine)10-poly(l-leucine)10 and LyP1-poly(ethylene glycol)1100-poly(l-glutamic acid)15-poly(l-histidine)10-poly(l-leucine)10, were exploited to self-assemble into micelles in aqueous phase. The bio-stable nanoparticles provide three distinct functional domains: the anionic PGlu shell for CaP mineralization, the protonation of PHis segment for facilitating anticancer drug release at target site, and the hydrophobic core of PLeu for encapsulation of anticancer drugs. Furthermore, the hydrated PEG outer corona is used for prolonging circulation time, while the active targeting ligand, LyP-1, is served to bind to breast cancer cells and lymphatic endothelial cells in tumor for inhibiting metastasis. Mineralized DOX-loaded nanoparticles (M-DOX NPs) efficiently prevent the drug leakage at physiological pH value and facilitate the encapsulated drug release at acidic condition when compared to DOX-loaded nanoparticles (DOX NPs). M-DOX NPs with LyP-1 targeting ligand effectively accumulated in MDA-MB-231 breast cancer cells. The inhibition effect on cell proliferation also enhances with time, illustrating the prominent anti-tumor efficacy. Moreover, the in vitro metastatic inhibition model shows the profound inhibition effect of inhibitory nanoparticles. In brief, this self-assembling peptide-based drug delivery nanocarrier with multifunctionality and programmable pH-sensitivity is of great promise and potential for anti-cancer therapy. STATEMENT OF SIGNIFICANCE: This tailored-design polypeptide-based nanoparticles with self-assembling and programmable stimulus-responsive properties enable to 1) have stable pH in physiological value with a low level of drug loss and effectively release the encapsulated drug with pH variations according to the tumor microenvironment, 2) enhance targeting ability to hard-to-treat breast cancer cells and activate endothelial cells (tumor region), 3) significantly inhibit the growth and prevent from malignant metastasis of cancer cells in consonance with promising anti-tumor efficacy, and 4) make tumors stick to localized position so that these confined solid tumors can be more accessible by different treatment modalities. This work contributes to designing a programmable pH-responsive drug delivery system based on the tailor-designed polypeptides.


Subject(s)
Breast Neoplasms/drug therapy , Doxorubicin , Drug Carriers , Drug Design , Nanoparticles , Peptides , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Peptides/chemistry , Peptides/pharmacology
9.
Radiother Oncol ; 104(3): 324-30, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22236614

ABSTRACT

PURPOSE: Volumetric modulated arc therapy (VMAT), a novel technique, employs a linear accelerator to conduct dynamic modulation rotation radiotherapy. The goal of this study was to compare VMAT with helical tomotherapy (HT) and step-and-shoot intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC) patients with regard to the sparing effect on organs at risk (OARs), dosimetric quality, and efficiency of delivery. MATERIALS AND METHODS: Twenty patients with NPC treated by HT were re-planned by VMAT (two arcs) and IMRT (7-9 fields) for dosimetric comparison. The target area received three dose levels (70, 60, and 54 Gy) in 33 fractions using simultaneous integrated boosts technique. The Philips Pinnacle Planning System 9.0 was adopted to design VMAT, using SmartArc as the planning algorithm. For a fair comparison, the planning target volume (PTV) coverage of the 3 plans was normalized to the same level. Dosimetric comparisons between VMAT, HT, and IMRT plans were analyzed to evaluate (1) coverage, homogeneity, and conformity of PTV, (2) sparing of OARs, (3) delivery time, and (4) monitor units (MUs). RESULTS: The VMAT, HT, and IMRT plans had similar PTV coverage with an average of 96%. There was no significant difference between VMAT and HT in homogeneity, while the homogeneity indices of VMAT (1.06) and HT (1.06) were better than IMRT plans (1.07, p<0.05). HT plans provided a better conformity index (1.17) than VMAT (1.28, p=0.01) and IMRT (1.36, p=0.02). When compared with IMRT, VMAT and HT had a better sparing effect on brain stem and spinal cord (p<0.05). The effect of parotid sparing was similar between VMAT (mean=26.3 Gy) and HT (mean=27.5 Gy), but better than IMRT (mean=31.3 Gy, p<0.01). The delivery time per fraction for VMAT (5.7 min) were much lower than for HT (9.5 min, p<0.01) and IMRT (9.2 min, p<0.01). CONCLUSIONS: Our results indicate that VMAT provides better sparing of normal tissue, homogeneity, and conformity than IMRT, and shorter delivery time than HT.


Subject(s)
Nasopharyngeal Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Carcinoma , Humans , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/adverse effects , Tomography, Spiral Computed , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...