Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(20): 29815-29828, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114872

ABSTRACT

Microlens arrays (MLAs) nowadays are critical micro-optical components and they can be applied in many application fields, such as optical communication systems and flat panel display modules. This article describes a novel approach to the fabrication of tunable, highly reliable, and uniform polydimethylsiloxane (PDMS) MLAs. A polydimethylsiloxane (PDMS) membrane is bonded to a micro-milled poly(methyl methacrylate) (PMMA) microfluidic chip and exposed to silicone oil of a specific viscosity. Molecules in the oil insert themselves into the molecular structure of the PDMS membrane, causing it to swell and subsequently form dome-shaped MLAs. From our experiments, we derived the following conclusions. First, the homogeneous swelling of the PDMS resulted in MLAs with a high numerical aperture (0.5), high uniformity illumination (CV of the illumination intensity is between 2.5%∼5.1%), and high uniformity (CV of sag height of MLAs is less than 0.05). Second, the shorter molecular chains in low-viscosity oils diffused more readily into the PDMS membrane, which increased the effects on swelling, resulting in MLAs with higher sag height and higher numerical aperture. For example, the 5 cst silicone oil resulted in sag height of 191 µm with NA of 0.50, whereas the 100 cst silicone oil resulted in sag height of 86 µm with numerical aperture of 0.33. Finally, the integrated mixer module enabled the simultaneous tuning of the 7 × 7 MLAs simply by adjusting the injection flow rates of the constituent silicone oils.

2.
Micromachines (Basel) ; 10(9)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470639

ABSTRACT

In a previous study, we presented a novel manufacturing process for the creation of 6 × 6 and 8 × 8 microlens arrays (MLAs) comprising lenses with diameters of 1000 µm, 500 µm, and 200 µm within an area that covers 10 mm × 10 mm. In the current study, we revised the manufacturing process to allow for the fabrication of MLAs of far higher density (15 × 15 and 29 × 29 within the same area). In this paper, we detail the revised manufacturing scheme, including the micromachining of molds, the partial-curing polydimethylsiloxane (PDMS) bonding used to fuse the glass substrate and PDMS, and the multi-step casting process. The primary challenges that are involved in creating MLAs of this density were ensuring uniform membrane thickness and preventing leakage between the PDMS and glass substrate. The experiment results demonstrated that the revised fabrication process is capable of producing high density arrays: Design I produced 15 × 15 MLAs with lens diameter of 0.5 mm and fill factor of 47.94%, while Design II produced 29 × 29 MLAs with lens diameter of 0.25 mm and fill factor of 40.87%. The partial-curing PDMS bonding system also proved to be effective in fusing PDMS with glass (maximum bonding strength of approximately six bars). Finally, the redesigned mold was used to create PDMS membranes of high thickness uniformity (coefficient of variance <0.07) and microlenses of high lens height uniformity (coefficient of variance <0.15).

SELECTION OF CITATIONS
SEARCH DETAIL
...