Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 331: 138719, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086981

ABSTRACT

Metal-cyanide complexes are common contaminants in industrial wastewater. Removal of these refractory contaminants is essential before their discharge into the environment. This study investigated a biochar (BC)-based sorbent material that could be applied for the efficient removal of metal-cyanide complexes from wastewater. In consideration of the strong electrostatic repulsion of the pristine BC toward anions, iron-modified BC (Fe-BC) composites were fabricated by a one-step co-pyrolysis of corn straw and FeCl3 at 600-800 °C. The adsorption performance and corresponding sorption mechanisms of representative metal-cyanide complexes (ferricyanide [Fe(CN)6]3- and tetracyanonickelate [Ni(CN)4]2-) onto the Fe-BC composites were investigated. The results indicated that the Fe-BC composites had significantly high affinity toward the metal-cyanide complexes, reaching a maximum sorption capacity of 580.96 mg/g for [Fe(CN)6]3- and 588.86 mg/g for [Ni (CN)4]2-. A mechanistic study revealed that Fe-impregnation during BC fabrication could effectively alter the negatively charged BC surface, forming more functional groups that could interact with the metal-cyanide complexes. Moreover, the transformation of carbon structure promoted the carbothermal reduction process, leading to the formation of various reductive-Fe minerals in the resulting Fe-BC composites. These modification-induced alterations to the surface and structural characteristics of BC were expected to facilitate the adsorption/precipitation of target contaminants. Different sorption mechanisms were proposed for the two metal-cyanide complexes that were the focus of this study. For [Fe(CN)6]3-, precipitation by Fe-bearing species in the Fe-BC composites was the major factor controlling [Fe(CN)6]3- removal, while for [Ni(CN)4]2- hydrogen bonding interactions between surface functional groups (especially hydroxyl (-OH) and carboxyl (-COOH)) and [Ni(CN)4]2- were the main factors controlling removal.


Subject(s)
Coordination Complexes , Water Pollutants, Chemical , Wastewater , Coordination Complexes/chemistry , Adsorption , Charcoal/chemistry , Cyanides/chemistry , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 292: 133463, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34974037

ABSTRACT

Persulfate (PS)-based advanced oxidation processes have been frequently employed for contaminant remediation, but the effectiveness of PS oxidation for the elimination of cyanide-bearing contaminants from soil, and the underlying mechanisms, have rarely been explored. This study investigated the degradation of two iron-cyanide (Fe-CN) complexes (ferricyanide and ferrocyanide) with thermally activated PS via two remediation strategies, namely one-step oxidation (direct PS oxidation) and two-step oxidation (alkaline extraction followed by PS oxidation). The two-step oxidation process was more effective for the elimination of cyanide pollutants from soil, reaching >94% remediation efficiency for both Fe-CN complexes studied. The presence of dissolved soil components, especially soil organic matter, increased consumption of PS during the remediation process. A combined analysis based on electron paramagnetic resonance (EPR), free radical scavenging, and degradation product identification revealed that SO4- and HO were the principal reactive radicals responsible for Fe-CN degradation. Based on the determination of radical species and identification of decomposition products, a transformation pathway for Fe-CN complexes during thermally activated PS oxidation is proposed. Overall, this study demonstrates the effectiveness of the thermally activated PS oxidation technique for cyanide elimination from polluted soil. Further study is required to verify the feasibility of this method for field applications.


Subject(s)
Soil Pollutants , Water Pollutants, Chemical , Cyanides , Environmental Pollution , Oxidation-Reduction , Soil , Soil Pollutants/analysis , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...