Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1200644, 2023.
Article in English | MEDLINE | ID: mdl-37153530

ABSTRACT

Semiconductors are widely used in electron devices. With the development of wearable soft-electron devices, conventional inorganic semiconductors are unable to meet the demand because of their high rigidity and high cost. Thus, scientists construct organic semiconductors with high charge mobility, low cost, eco-friendly, stretchable, etc. Due to the excellent performance of stretchable organic semiconductors, they can be widely used as wearable soft-electron devices, such as stretchable organic field-effect transistors (OFETs), organic solar cells (OSCs), etc. Contains flexible display devices and flexible power sources, which are of great interest for applications of future electron devices. However, there are still some challenges that need to be solved. Commonly, enhancing the stretchability may cause the degradation of charge mobility, because of the destruction of the conjugated system. Currently, scientists find that hydrogen bonding can enhance the stretchability of organic semiconductors with high charge mobility. Thus in this review, based on the structure and design strategies of hydrogen bonding, various hydrogen bonding induced stretchable organic semiconductors are introduced. In addition, the applications of the hydrogen bonding induced stretchable organic semiconductors are reviewed. Finally, the stretchable organic semiconductors design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance wearable soft-electron devices, which can also further advance the development of stretchable organic semiconductors for applications.

2.
Polymers (Basel) ; 9(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-30965832

ABSTRACT

In this paper, a dynamic impregnating device, which can generate supersonic vibration with the vacuum-adsorbing field, was used to prepare the hybrid graphene oxide (GO)/polyethylene glycol (PEG). Interestingly, the hybrid GO/PEG under dynamic impregnating and/or internal mixing was introduced into poly-(lactic acid) (PLA) matrix via melting-compounding, respectively. On one hand, compared with the internal mixing, the hybrid GO/PEG with the different component ratio using dynamic impregnation had a better dispersed morphology in the PLA matrix. On the other hand, compared with the high molecular weight (Mw) of PEG, the hybrid GO/PEG with low Mw of PEG had better an exfoliated morphology and significantly improved the heat distortion temperature (HDT) of the PLA matrix. Binding energies results indicate that low Mw of PEG with GO has excellent compatibility. Dispersed morphologies of the hybrid GO/PEG show that the dynamic impregnating had stronger blending capacity than the internal mixing and obviously improved the exfoliated morphology of GO in the PLA. Crystallization behaviors indicate that the hybrid GO/PEG with the low Mw of PEG based on dynamic impregnating effectively enhanced the crystallinity of PLA, and the cold crystallization character of PLA disappeared in the melting process. Moreover, the storage modulus and loss factor of the PLA-based composites were also investigated and their HDT was improved with the introduction of hybrid GO/PEG. Furthermore, a physical model for the dispersed morphology of the hybrid GO/PEG in the PLA matrix was established. Overall, the unique blending technique of hybrid GO/PEG via dynamic impregnating is an effective approach to enhance the property range of PLA and is suitable for many industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...