Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Immun ; 5(1): 89-116, 2020.
Article in English | MEDLINE | ID: mdl-34136728

ABSTRACT

BACKGROUND: In cholera epidemics, the spread of disease can easily outpace vaccine control measures. The advent of technologies enabling the expression of recombinant proteins, including antibodies, in the milk of transgenic animals raises the prospect of developing a self-administered and cost-effective monoclonal antibody (MAb)-based prophylactic to reduce the incidence of Vibrio cholerae infection. METHODS: We generated a transgenic mouse line in which the heavy and light chain variable regions (Fv) specific for a conserved epitope in the core/lipid A of V. cholerae O1 lipopolysaccharide were expressed as a full-length human dimeric IgA1 (ZAC-3) and secreted into the milk of lactating dams. Milk containing ZAC-3 IgA1 was assessed for the ability to passively protect against experimental cholera infection in a newborn mouse model and to impact bacterial swimming behavior. RESULTS: Newborn mice that were passively administered ZAC-3 IgA1 containing milk, or that suckled on dams expressing ZAC-3 IgA1, were immune to experimental cholera infection, as measured by a reduction of V. cholerae O1 colony forming units recovered from intestinal lysates 12 hours after oral challenge. In vitro analysis revealed that ZAC-3 hIgA1-containing milk arrested V. cholerae motility in soft agar and liquid media and was effective at promoting bacterial agglutination, possibly accounting for the observed reduction in bacterial colonization in vivo. CONCLUSIONS: These results demonstrate that consumption of milk-derived antibodies may serve as a strategy to passively protect against cholera and possibly other enteric pathogens.

2.
Lab Anim (NY) ; 34(4): 61-3, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15806092

ABSTRACT

The production of recombinant proteins in the milk of transgenic animals is an alternative to traditional cell culture methodology. Transgenic rabbits can serve in the small-scale production of recombinant proteins, underscoring the need to maintain valuable transgenic lines. In this study, the authors used cryopreserved transgenic rabbit semen to artificially inseminate does, demonstrating the utility of this method for the reestablishment of a transgenic rabbit herd.


Subject(s)
Animal Husbandry/methods , Animals, Genetically Modified/genetics , Cryopreservation , Insemination, Artificial/methods , Semen Preservation/methods , Semen/physiology , Animals , Breeding/methods , Female , Litter Size , Male , Rabbits/genetics , Semen/cytology , Spermatozoa/cytology , Spermatozoa/physiology , Veterinary Medicine/methods
3.
Theriogenology ; 63(6): 1549-63, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15763100

ABSTRACT

This work was performed within a commercial nuclear transfer program to investigate different methods for synchronizing donor cell cycle stage, for harvesting donor cells, and for fusion and activation of reconstructed caprine embryos. Primary fetal cells isolated from day 35 to day 40 fetuses were co-transfected with DNA fragments encoding both the heavy and light immunoglobulin chains of three different monoclonal antibodies and neomycin resistance. Four neomycin resistant cell lines for each antibody were selected, expanded, and aliquots were both cryopreserved for later use as karyoplast donors or used for further genetic characterization. Transfected fetal cells were cultured in 0.5% FBS to synchronize G0/G1 cell cycle stage cells, then re-fed with 10% FBS prior to use to allow donor cells to re-enter the cell cycle. Alternatively, transfected fetal cells were grown to confluence in 10% FBS to induce contact inhibition to synchronize G0/G1 cell cycle stage cells. Adherent monolayers of transfected fetal donor cells were harvested by either partial or complete trypsinization. Donor cells were simultaneously fused and activated with enulceated in vivo produced ovulated oocytes from superovulated does. Half of the fused couplets received an additional electrical activation pulse and non-fused couplets were re-fused. Four live offspring were produced from 587 embryos generated from cell lines cultured in 0.5% FBS, while one live offspring was produced from 315 embryos generated from cell lines cultured in 10% FBS (0.7% versus 0.3% embryos transferred, respectively, P > 0.05). Five offspring were produced from 633 embryos generated from cell lines harvested by partial trypsinization (0.8% embryos transferred), and no offspring were produced from 269 embryos generated from cell lines harvested by complete trypsinization. Four live offspring were produced from 447 embryos generated from re-fused couplets, and one live offspring was produced from 230 embryos generated from fused couplets that received an additional electrical activation pulse (0.9% versus 0.4% embryos transferred, respectively, P > 0.05). These results suggest that low-serum culture of transfected goat fetal cells and harvest by partial trypsinization may be more efficient methods for generating transgenic goats by somatic cell nuclear transfer. In addition, re-fusion of non-fused couplet or an additional activation step was successful for producing live offspring.


Subject(s)
Animals, Genetically Modified , Goats , Nuclear Transfer Techniques , Transfection , Trypsin/metabolism , Animals , Antibodies, Monoclonal/genetics , Blood , Cell Cycle , Cell Fusion , Cells, Cultured , Cryopreservation , Culture Media , Drug Resistance/genetics , Embryo Transfer , Female , Fetus/cytology , Goats/embryology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Neomycin , Oocytes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...