Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
Cell Stem Cell ; 31(5): 583-585, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701751

ABSTRACT

How nuclear RNA homeostasis impacts cellular functions remains elusive. In this issue of Cell Stem Cell, Han et al.1 utilized a controllable protein degradation system targeting EXOSC2 to perturb RNA homeostasis in mouse pluripotent embryonic stem cells, revealing its vital role in orchestrating crucial nuclear events for cellular fitness.


Subject(s)
Homeostasis , RNA, Nuclear , Animals , Mice , RNA, Nuclear/metabolism , RNA, Nuclear/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Cell Nucleus/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
2.
Nat Biotechnol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653797

ABSTRACT

Efforts to advance RNA aptamers as a new therapeutic modality have been limited by their susceptibility to degradation and immunogenicity. In a previous study, we demonstrated synthesized short double-stranded region-containing circular RNAs (ds-cRNAs) with minimal immunogenicity targeted to dsRNA-activated protein kinase R (PKR). Here we test the therapeutic potential of ds-cRNAs in a mouse model of imiquimod-induced psoriasis. We find that genetic supplementation of ds-cRNAs leads to inhibition of PKR, resulting in alleviation of downstream interferon-α and dsRNA signals and attenuation of psoriasis phenotypes. Delivery of ds-cRNAs by lipid nanoparticles to the spleen attenuates PKR activity in examined splenocytes, resulting in reduced epidermal thickness. These findings suggest that ds-cRNAs represent a promising approach to mitigate excessive PKR activation for therapeutic purposes.

3.
Methods Mol Biol ; 2765: 173-191, 2024.
Article in English | MEDLINE | ID: mdl-38381340

ABSTRACT

Although discovered decades ago, functions of circular RNAs (circRNAs) produced from exon(s) back-splicing of pre-mRNAs have only been unveiled recently. As circRNAs share overlapping sequences with their cognate linear RNAs, except for the back-splicing junction sites, it is difficult to distinguish circRNAs from cognate mRNAs in functional studies. In this chapter, we describe a programmable method for the large-scale functional circRNA screening based on the RNA-guided, RNA-targeting CRISPR-Cas13 (RfxCas13d) system. This method can be applied both in vivo and in cell to explore highly expressed circRNAs that may influence cell growth, either under natural conditions or in response to environmental stimulation, without disturbing cognate linear mRNAs.

4.
Plant Cell ; 36(6): 2117-2139, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38345423

ABSTRACT

Plants have evolved complex mechanisms to adapt to harsh environmental conditions. Rice (Oryza sativa) is a staple food crop that is sensitive to low temperatures. However, its cold stress responses remain poorly understood, thus limiting possibilities for crop engineering to achieve greater cold tolerance. In this study, we constructed a rice pan-transcriptome and characterized its transcriptional regulatory landscape in response to cold stress. We performed Iso-Seq and RNA-Seq of 11 rice cultivars subjected to a time-course cold treatment. Our analyses revealed that alternative splicing-regulated gene expression plays a significant role in the cold stress response. Moreover, we identified CATALASE C (OsCATC) and Os03g0701200 as candidate genes for engineering enhanced cold tolerance. Importantly, we uncovered central roles for the 2 serine-arginine-rich proteins OsRS33 and OsRS2Z38 in cold tolerance. Our analysis of cold tolerance and resequencing data from a diverse collection of 165 rice cultivars suggested that OsRS2Z38 may be a key selection gene in japonica domestication for cold adaptation, associated with the adaptive evolution of rice. This study systematically investigated the distribution, dynamic changes, and regulatory mechanisms of alternative splicing in rice under cold stress. Overall, our work generates a rich resource with broad implications for understanding the genetic basis of cold response mechanisms in plants.


Subject(s)
Alternative Splicing , Gene Expression Profiling , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/physiology , Alternative Splicing/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Cold-Shock Response/genetics , Transcriptome/genetics
5.
Biotechnol Biofuels Bioprod ; 17(1): 17, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38291537

ABSTRACT

Camelina neglecta is a new diploid Brassicaceae species, which has great research value because of its close relationship with the hexaploid oilseed crop Camelina sativa. Here, we report a chromosome-level assembly of C. neglecta with a total length of 210 Mb. By adopting PacBio sequencing and Hi-C technology, the C. neglecta genome was assembled into 6 chromosomes with scaffold N50 of 29.62 Mb. C. neglecta has undergone the whole-genome triplication (γ) shared among eudicots and two whole-genome duplications (α and ß) shared by crucifers, but it has not undergone a specific whole-genome duplication event. By synteny analysis between C. neglecta and C. sativa, we successfully used the method of calculating Ks to distinguish the three subgenomes of C. sativa and determined that C. neglecta was closest to the first subgenome (SG1) of C. sativa. Further, transcriptomic analysis revealed the key genes associated with seed oil biosynthesis and its transcriptional regulation, including SAD, FAD2, FAD3, FAE1, ABI3, WRI1 and FUS3 displaying high expression levels in C. neglecta seeds. The high representability of C. neglecta as a model species for Camelina-based biotechnology research has been demonstrated for the first time. In particular, floral Agrobacterium tumefaciens infiltration-based transformation of C. neglecta, leading to overexpression of CvLPAT2, CpDGAT1 and CvFatB1 transgenes, was demonstrated for medium-chain fatty acid accumulation in C. neglecta seed oil. This study provides an important genomic resource and establishes C. neglecta as a new model for oilseed biotechnology research.

6.
Cell Chem Biol ; 31(1): 10-13, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38242091

ABSTRACT

In the first of many thematic issues marking the 30th anniversary of Cell Chemical Biology, we highlight the contribution of chemical biology to RNA biology in a special issue on RNA modulation. We asked several leaders in the field to share their opinions on the current challenges and opportunities in RNA biology.

7.
Comput Struct Biotechnol J ; 23: 316-329, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38192372

ABSTRACT

Host-pathogen interactions (HPIs) are vital in numerous biological activities and are intrinsically linked to the onset and progression of infectious diseases. HPIs are pivotal in the entire lifecycle of diseases: from the onset of pathogen introduction, navigating through the mechanisms that bypass host cellular defenses, to its subsequent proliferation inside the host. At the heart of these stages lies the synergy of proteins from both the host and the pathogen. By understanding these interlinking protein dynamics, we can gain crucial insights into how diseases progress and pave the way for stronger plant defenses and the swift formulation of countermeasures. In the framework of current study, we developed a web-based R/Shiny app, Deep-HPI-pred, that uses network-driven feature learning method to predict the yet unmapped interactions between pathogen and host proteins. Leveraging citrus and CLas bacteria training datasets as case study, we spotlight the effectiveness of Deep-HPI-pred in discerning Protein-protein interaction (PPIs) between them. Deep-HPI-pred use Multilayer Perceptron (MLP) models for HPI prediction, which is based on a comprehensive evaluation of topological features and neural network architectures. When subjected to independent validation datasets, the predicted models consistently surpassed a Matthews correlation coefficient (MCC) of 0.80 in host-pathogen interactions. Remarkably, the use of Eigenvector Centrality as the leading topological feature further enhanced this performance. Further, Deep-HPI-pred also offers relevant gene ontology (GO) term information for each pathogen and host protein within the system. This protein annotation data contributes an additional layer to our understanding of the intricate dynamics within host-pathogen interactions. In the additional benchmarking studies, the Deep-HPI-pred model has proven its robustness by consistently delivering reliable results across different host-pathogen systems, including plant-pathogens (accuracy of 98.4% and 97.9%), human-virus (accuracy of 94.3%), and animal-bacteria (accuracy of 96.6%) interactomes. These results not only demonstrate the model's versatility but also pave the way for gaining comprehensive insights into the molecular underpinnings of complex host-pathogen interactions. Taken together, the Deep-HPI-pred applet offers a unified web service for both identifying and illustrating interaction networks. Deep-HPI-pred applet is freely accessible at its homepage: https://cbi.gxu.edu.cn/shiny-apps/Deep-HPI-pred/ and at github: https://github.com/tahirulqamar/Deep-HPI-pred.

8.
Int J Ophthalmol ; 17(1): 157-163, 2024.
Article in English | MEDLINE | ID: mdl-38239943

ABSTRACT

AIM: To explore the factors influencing individuals' willingness to participate in ophthalmic clinical trials. METHODS: A questionnaire survey was conducted from January to April 2021 among patients and their family members at Zhongshan Ophthalmic Center, Sun Yat-sen University, in Guangzhou, China. The survey gathered data on respondents' willingness, demographic and socioeconomic profiles, as well as their reasons and concerns regarding engagement in clinical trials. RESULTS: Of the 1078 residents surveyed (mean age 31.2±13.1y; 65.8% females) in Guangzhou, 749 (69.5%) expressed a willingness to participate in future ophthalmic clinical trials. Specific characteristics associated with greater willingness included a younger age, lower annual income, higher education, prior participation experience, previous ophthalmic treatment, and a better understanding of clinical trials. With the exception of age, these characteristics were significantly linked to a higher willingness. The primary barrier to participation, expressed by 64.8% of those willing and 54.4% of those unwilling, was "Uncertain efficacy". In terms of motivations, the willing group ranked "Better therapeutic benefits" (35.0%), "Professional monitoring" (34.3%), and "Trust in healthcare professionals" (33.1%) as their top three reasons, whereas the unwilling participants indicated "Full comprehension of the protocol" (46.2%) as the key facilitator. CONCLUSION: This study reveals a substantial willingness to participate in ophthalmic clinical trials and demonstrates the predictive role of demographic and socioeconomic factors. Variations in motivators and concerns between willing and unwilling participants highlight the significance of tailored recruitment strategies. Importantly, the need for and trust in healthcare professionals stand out as powerful motivations, underscoring the importance of enhancing physician-patient relationships, adopting patient-centered communication approaches, and addressing individualized needs to improve accrual rates.

9.
Plant Commun ; 5(1): 100681, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37660253

ABSTRACT

Bananas (Musa spp.) are monocotyledonous plants with high genetic diversity in the Musaceae family that are cultivated mainly in tropical and subtropical countries. The fruits are a popular food, and the plants themselves have diverse uses. Four genetic groups (genomes) are thought to have contributed to current banana cultivars: Musa acuminata (A genome), Musa balbisiana (B genome), Musa schizocarpa (S genome), and species of the Australimusa section (T genome). However, the T genome has not been effectively explored. Here, we present the high-quality TT genomes of two representative accessions, Abaca (Musa textilis), with high-quality natural fiber, and Utafun (Musa troglodytarum, Fe'i group), with abundant ß-carotene. Both the Abaca and Utafun assemblies comprise 10 pseudochromosomes, and their total genome sizes are 613 Mb and 619 Mb, respectively. Comparative genome analysis revealed that the larger size of the T genome is likely attributable to rapid expansion and slow removal of transposons. Compared with those of Musa AA or BB accessions or sisal (Agava sisalana), Abaca fibers exhibit superior mechanical properties, mainly because of their thicker cell walls with a higher content of cellulose, lignin, and hemicellulose. Expression of MusaCesA cellulose synthesis genes peaks earlier in Abaca than in AA or BB accessions during plant development, potentially leading to earlier cellulose accumulation during secondary cell wall formation. The Abaca-specific expressed gene MusaMYB26, which is directly regulated by MusaMYB61, may be an important regulator that promotes precocious expression of secondary cell wall MusaCesAs. Furthermore, MusaWRKY2 and MusaNAC68, which appear to be involved in regulating expression of MusaLAC and MusaCAD, may at least partially explain the high accumulation of lignin in Abaca. This work contributes to a better understanding of banana domestication and the diverse genetic resources in the Musaceae family, thus providing resources for Musa genetic improvement.


Subject(s)
Musa , Musa/genetics , Genome, Plant , Lignin
10.
Plant Physiol ; 194(4): 2491-2510, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38039148

ABSTRACT

Passion fruit (Passiflora edulis) possesses a complex aroma and is widely grown in tropical and subtropical areas. Here, we conducted the de novo assembly, annotation, and comparison of PPF (P. edulis Sims) and YPF (P. edulis f. flavicarpa) reference genomes using PacBio, Illumina, and Hi-C technologies. Notably, we discovered evidence of recent whole-genome duplication events in P. edulis genomes. Comparative analysis revealed 7.6∼8.1 million single nucleotide polymorphisms, 1 million insertions/deletions, and over 142 Mb presence/absence variations among different P. edulis genomes. During the ripening of yellow passion fruit, metabolites related to flavor, aroma, and color were substantially accumulated or changed. Through joint analysis of genomic variations, differentially expressed genes, and accumulated metabolites, we explored candidate genes associated with flavor, aroma, and color distinctions. Flavonoid biosynthesis pathways, anthocyanin biosynthesis pathways, and related metabolites are pivotal factors affecting the coloration of passion fruit, and terpenoid metabolites accumulated more in PPF. Finally, by heterologous expression in yeast (Saccharomyces cerevisiae), we functionally characterized 12 terpene synthases. Our findings revealed that certain TPS homologs in both YPF and PPF varieties produce identical terpene products, while others yield distinct compounds or even lose their functionality. These discoveries revealed the genetic and metabolic basis of unique characteristics in aroma and flavor between the 2 passion fruit varieties. This study provides resources for better understanding the genome architecture and accelerating genetic improvement of passion fruits.


Subject(s)
Fruit , Passiflora , Fruit/genetics , Odorants , Passiflora/genetics , Passiflora/metabolism , Multiomics , Terpenes/metabolism
11.
Plant Commun ; 5(2): 100766, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37974402

ABSTRACT

Bananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M. balbisiana (BB). We report two haplotype-resolved genome assemblies of the representative AAB-cultivated types, Plantain and Silk, and precisely characterize ancestral contributions by examining ancestry mosaics across the genome. Widespread asymmetric evolution is observed in their subgenomes, which can be linked to frequent homologous exchange events. We reveal the genetic makeup of triploid banana cultivars and verify that subgenome B is a rich source of disease resistance genes. Only 58.5% and 59.4% of Plantain and Silk genes, respectively, are present in all three haplotypes, with >50% of genes being differentially expressed alleles in different subgenomes. We observed that the number of upregulated genes in Plantain is significantly higher than that in Silk at one-week post-inoculation with Fusarium wilt tropical race 4 (Foc TR4), which confirms that Plantain can initiate defense responses faster than Silk. Additionally, we compared genomic and transcriptomic differences among the genes related to carotenoid synthesis and starch metabolism between Plantain and Silk. Our study provides resources for better understanding the genomic architecture of cultivated bananas and has important implications for Musa genetics and breeding.


Subject(s)
Fusarium , Musa , Musa/genetics , Fusarium/genetics , Haplotypes , Gene Expression Profiling , Transcriptome
12.
Hortic Res ; 10(11): uhad200, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023477

ABSTRACT

Cassava is a crucial crop that makes a significant contribution to ensuring human food security. However, high-quality telomere-to-telomere cassava genomes have not been available up to now, which has restricted the progress of haploid molecular breeding for cassava. In this study, we constructed two nearly complete haploid resolved genomes and an integrated, telomere-to-telomere gap-free reference genome of an excellent cassava variety, 'Xinxuan 048', thereby providing a new high-quality genomic resource. Furthermore, the evolutionary history of several species within the Euphorbiaceae family was revealed. Through comparative analysis of haploid genomes, it was found that two haploid genomes had extensive differences in linear structure, transcriptome features, and epigenetic characteristics. Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway. The high heterozygosity of cassava 'Xinxuan 048' leads to rapid trait segregation in the first selfed generation. This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.

13.
Front Plant Sci ; 14: 1285547, 2023.
Article in English | MEDLINE | ID: mdl-37965009

ABSTRACT

The nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family is the largest group of disease resistance (R) genes in plants and is active in response to viruses, bacteria, and fungi usually involved in effector-triggered immunity (ETI). Pangenome-wide studies allow researchers to analyze the genetic diversity of multiple species or their members simultaneously, providing a comprehensive understanding of the evolutionary relationships and diversity present among them. The draft pan-genome of three Mangifera indica cultivars (Alphonso, Hong Xiang Ya, and Tommy atkins) was constructed and Presence/absence variants (PAVs) were filtered through the ppsPCP pipeline. As a result, 2823 genes and 5907 PAVs from H. Xiang Ya, and 1266 genes and 2098 PAVs from T. atkins were added to the reference genome. For the identification of CC-NBS-LRR (CNL) genes in these mango cultivars, this draft pan-genome study has successfully identified 47, 27, and 36 members in Alphonso, H. Xiang Ya, and T. atkins respectively. The phylogenetic analysis divided MiCNL proteins into four distinct subgroups. All MiCNL genes are unevenly distributed on chromosomes. Both tandem and segmental duplication events played a significant role in the expansion of the CNL gene family. These genes contain cis-elements related to light, stress, hormone, and development. The analysis of protein-protein interactions (PPI) revealed that MiCNL proteins interacted with other defense-responsive proteins. Gene Ontology (GO) analysis indicated that MiCNL genes play a role in defense mechanisms within the organism. The expression level of the identified genes in fruit peel was observed under disease and cold stress which showed that Mi_A_CNL13 and 14 were up-regulated while Mi_A_CNL15, 25, 30, 31, and 40 were down-regulated in disease stress. On the other hand, Mi_A_CNL2, 14, 41, and 45 were up-regulated and Mi_A_CNL47 is down-regulated in cold stress. Subsequently, the Random Forest (RF) classifier was used to assess the multi-stress response of MiCNLs. It was found that Mi_A_CNL14 is a gene that responds to multiple stress conditions. The CNLs have similar protein structures which show that they are involved in the same function. The above findings provide a foundation for a deeper understanding of the functional characteristics of the mango CNL gene family.

14.
J Oral Microbiol ; 15(1): 2277271, 2023.
Article in English | MEDLINE | ID: mdl-37928602

ABSTRACT

Background: Despite poor oral hygiene, the Baiku Yao (BKY) ethnic group in China presents a low prevalence of dental caries, which may be related to genetic susceptibility. Due to strict intra-ethnic marriage rule, this ethnic has an advantage in studying the interaction between genetic factors and other regulatory factors related to dental caries. Methods: Peripheral blood from a caries-free adult male was used for whole genome sequencing, and the BKY assembled genome was compared to the Han Chinese genome. Oral saliva samples were collected from 51 subjects for metabolomic and metagenomic analysis. Multiomics data were integrated for combined analysis using bioinformatics approaches. Results: Comparative genomic analysis revealed the presence of structural variations in several genes associated with dental caries. Metabolomic and metagenomic sequencing demonstrated the caries-free group had significantly higher concentration of antimicrobials and higher abundance of core oral health-related microbiota. The functional analysis indicated that cationic antimicrobial peptide resistance and the lipopolysaccharide biosynthesis pathway were enriched in the caries-free group. Conclusions: Our study provided new insights into the specific regulatory mechanisms that contribute to the low prevalence of dental caries in the specific population and may provide new evidence for the genetic diagnosis and control of dental caries.

15.
Trends Cell Biol ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37993310

ABSTRACT

Nuclear bodies (NBs) are biomolecular condensates that participate in various cellular processes and respond to cellular stimuli in the nucleus. The assembly and function of these protein- and RNA-rich bodies, such as nucleoli, nuclear speckles, and promyelocytic leukemia (PML) NBs, contribute to the spatial organization of the nucleus, regulating chromatin activities locally and globally. Recent technological advancements, including spatial multiomics approaches, have revealed novel roles of nucleoli in modulating ribosomal DNA (rDNA) and adjacent non-rDNA chromatin activity, nuclear speckles in scaffolding active genome architecture, and PML NBs in maintaining genome stability during stress conditions. In this review, we summarize emerging functions of these important NBs in the spatial organization of the genome, aided by recently developed spatial multiomics approaches toward this direction.

17.
RNA Biol ; 20(1): 419-430, 2023 01.
Article in English | MEDLINE | ID: mdl-37405372

ABSTRACT

The genetic disorder Prader-Willi syndrome (PWS) is mainly caused by the loss of multiple paternally expressed genes in chromosome 15q11-q13 (the PWS region). Early diagnosis of PWS is essential for timely treatment, leading to effectively easing some clinical symptoms. Molecular approaches for PWS diagnosis at the DNA level are available, but the diagnosis of PWS at the RNA level has been limited. Here, we show that a cluster of paternally transcribed snoRNA-ended long noncoding RNAs (sno-lncRNAs, sno-lncRNA1-5) derived from the SNORD116 locus in the PWS region can serve as diagnostic markers. In particular, quantification analysis has revealed that 6,000 copies of sno-lncRNA3 are present in 1 µL whole blood samples from non-PWS individuals. sno-lncRNA3 is absent in all examined whole blood samples of 8 PWS individuals compared to 42 non-PWS individuals and dried blood samples of 35 PWS individuals compared to 24 non-PWS individuals. Further developing a new CRISPR-MhdCas13c system for RNA detection with a sensitivity of 10 molecules per µL has ensured sno-lncRNA3 detection in non-PWS, but not PWS individuals. Together, we suggest that the absence of sno-lncRNA3 represents a potential marker for PWS diagnosis that can be detected by both RT-qPCR and CRISPR-MhdCas13c systems with only microlitre amount of blood samples. Such an RNA-based sensitive and convenient approach may facilitate the early detection of PWS.


Subject(s)
Prader-Willi Syndrome , RNA, Long Noncoding , Humans , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/genetics , RNA, Long Noncoding/genetics , RNA, Small Nucleolar/genetics
18.
Org Lett ; 25(19): 3445-3450, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37166143

ABSTRACT

The atroposelective electrophilic sulfenylation of biaryl anilines has been realized for the first time. The reaction is enabled by a new chiral 6,6'-dianisole substituted SPINOL-derived selenide. A variety of axially chiral sulfur-containing biaryl aniline compounds were obtained in moderate to excellent yields with moderate to excellent enantioselectivities. The experimental results suggest that catalyst rigidity is important for the high atroposelectivity.

19.
Nature ; 615(7952): 526-534, 2023 03.
Article in English | MEDLINE | ID: mdl-36890225

ABSTRACT

The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.


Subject(s)
Cell Nucleolus , Exosomes , RNA Precursors , RNA Processing, Post-Transcriptional , RNA, Ribosomal , Zebrafish , Animals , Mice , Cell Nucleolus/metabolism , Embryonic Development , Exosomes/metabolism , Head/abnormalities , Microscopy , Nuclear Proteins/metabolism , RNA Precursors/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal, 28S/metabolism , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...