Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 23(8): 1123-32, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23727810

ABSTRACT

The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.


Subject(s)
Brucellaceae/metabolism , Chromium/metabolism , Chromium/toxicity , Drug Resistance, Bacterial , Soil Microbiology , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Brucellaceae/classification , Brucellaceae/genetics , Brucellaceae/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Microscopy, Electron, Transmission , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, X-Ray Emission
2.
J Hazard Mater ; 256-257: 24-32, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23669787

ABSTRACT

A novel Cr(VI)-reducing strain, Pseudochrobactrum saccharolyticum LY10, was isolated and characterized for its high Cr(VI)-reducing ability. Strain LY10 had typical characteristics of alkali-tolerance and halotolerance. Kinetic analysis indicated that the maximum reduction rate was achieved under optimum conditions with initial pH 8.3, 20gL(-1) NaCl, 55mgL(-1) Cr(VI), and 1.47×10(9)cellsmL(-1) of cell concentration. Further mechanism studies verified that the removal of Cr(VI) was mainly achieved by a metabolism-dependent bioreduction process. Strain LY10 accumulated chromium both in and around the cells, with cell walls acting as the major binding sites for chromium. X-ray absorption near-edge structure (XANES) analysis further confirmed that the chromium immobilized by the cells was in the Cr(III) state. In the present study, Pseudochrobactrum saccharolyticum was, for the first time, reported to be a Cr(VI)-reducing bacteria. Results from this research would provide a potential candidate for bioremediation of Cr(VI)-contaminated environments, especially alkaline and saline milieus with Cr(VI) at low-to-mid concentrations.


Subject(s)
Brucellaceae/metabolism , Chromium/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Brucellaceae/ultrastructure , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Oxidation-Reduction , Salinity
3.
Bioresour Technol ; 102(19): 8877-84, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21764299

ABSTRACT

Biochars produced by pyrolysis of hardwood at 450 °C (HW450) and corn straw at 600 °C (CS600) were characterized and investigated as adsorbents for the removal of Cu(II) and Zn(II) from aqueous solution. The adsorption data were well described by a Langmuir isotherm, with maximum Cu(II) and Zn(II) adsorption capacities of 12.52 and 11.0 mg/g for CS600, 6.79 and 4.54 mg/g for HW450, respectively. Thermodynamic analysis suggested that the adsorption was an endothermic process and did not occur spontaneously. Although Cu(II) adsorption was only marginally affected by Zn(II), Cu(II) competed with Zn(II) for binding sites at Cu(II) and Zn(II) concentrations ≥ 1.0mM. Results from this study indicated that plant-residue or agricultural waste derived biochar can act as effective surface sorbent, but their ability to treat mixed waste streams needs to be carefully evaluated on an individual basis.


Subject(s)
Charcoal/chemistry , Copper/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Zinc/chemistry , Adsorption , Hot Temperature , Plant Stems/chemistry , Wood/chemistry , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...