Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Int J Biol Sci ; 20(8): 3201-3218, 2024.
Article in English | MEDLINE | ID: mdl-38904015

ABSTRACT

Tumor-associated macrophages (TAMs) represent a predominant cellular component within the tumor microenvironment (TME) of pancreatic neuroendocrine neoplasms (pNENs). There is a growing body of evidence highlighting the critical role of exosomes in facilitating communication between tumor cells and TAMs, thereby contributing to the establishment of the premetastatic niche. Nonetheless, the specific mechanisms through which exosomes derived from tumor cells influence macrophage polarization under hypoxic conditions in pNENs, and the manner in which these interactions support cancer metastasis, remain largely unexplored. Recognizing the capacity of exosomes to transfer miRNAs that can modify cellular behaviors, our research identified a significant overexpression of miR-4488 in exosomes derived from hypoxic pNEN cells. Furthermore, we observed that macrophages that absorbed circulating exosomal miR-4488 underwent M2-like polarization. Our investigations revealed that miR-4488 promotes M2-like polarization by directly targeting and suppressing RTN3 in macrophages. This suppression of RTN3 enhances fatty acid oxidation and activates the PI3K/AKT/mTOR signaling pathway through the interaction and downregulation of FABP5. Additionally, M2 polarized macrophages contribute to the formation of the premetastatic niche and advance pNENs metastasis by releasing MMP2, thereby establishing a positive feedback loop involving miR-4488, RTN3, FABP5, and MMP2 in pNEN cells. Together, these findings shed light on the role of exosomal miRNAs from hypoxic pNEN cells in mediating interactions between pNEN cells and intrahepatic macrophages, suggesting that miR-4488 holds potential as a valuable biomarker and therapeutic target for pNENs.


Subject(s)
Exosomes , Liver Neoplasms , Macrophages , MicroRNAs , Neuroendocrine Tumors , Pancreatic Neoplasms , MicroRNAs/metabolism , MicroRNAs/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Exosomes/metabolism , Humans , Animals , Mice , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Macrophages/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Oxidation-Reduction , Tumor Microenvironment , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice, Nude , Signal Transduction
2.
Front Immunol ; 15: 1382661, 2024.
Article in English | MEDLINE | ID: mdl-38558797

ABSTRACT

Introduction: BTBD8 has been identified as a susceptible gene for inflammatory bowel diseases (IBD). However, the function of BTBD8 in normal development and IBD pathogenesis remains unknown. Methods: We administered drinking water with 3% dextran sodium sulfate (DSS) to wild-type (WT) and Btbd8 knockout (KO) mice for seven consecutive days to induce IBD. Subsequently, we further examined whether Btbd8 KO affects intestinal barrier and inflammation. Results: We demonstrated that Btbd8 deficiency partially protects mice from DSS-induced IBD, even though no obvious phenotypes were observed in Btbd8 KO mice. Btbd8 deletion leads to strengthened tight junctions between intestinal epithelial cells, elevated intestinal stem cell activity, and enhanced mucus layer. All these three mechanisms work together to improve the intestinal barrier integrity in Btbd8 KO mice. In addition, Btbd8 deficiency mitigates inflammation by reducing the expression of IL-1ß and IL-6 by macrophages. Discussion: Our studies validate the crucial role of Btbd8 in IBD pathogenesis, and reveal that Btbd8 deficiency may ameliorate DSS-induced IBD through improving the intestinal barrier integrity, as well as suppressing inflammatory response mediated by macrophages. These findings suggest that Btbd8 could be a promising therapeutic target for the treatment of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Intestinal Barrier Function , Colitis/chemically induced , Colitis/genetics , Colitis/drug therapy , Inflammation/genetics , Inflammation/pathology , Intestines/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology
3.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473939

ABSTRACT

Embryonic stem cells (ESCs) favor glycolysis over oxidative phosphorylation for energy production, and glycolytic metabolism is critical for pluripotency establishment, maintenance, and exit. However, an understanding of how glycolysis regulates the self-renewal and differentiation of ESCs remains elusive. Here, we demonstrated that protein lactylation, regulated by intracellular lactate, contributes to the self-renewal of ESCs. We further showed that Esrrb, an orphan nuclear receptor involved in pluripotency maintenance and extraembryonic endoderm stem cell (XEN) differentiation, is lactylated on K228 and K232. The lactylation of Esrrb enhances its activity in promoting ESC self-renewal in the absence of the LIF and XEN differentiation of ESCs by increasing its binding at target genes. Our studies reveal the importance of protein lactylation in the self-renewal and XEN differentiation of ESCs, and the underlying mechanism of glycolytic metabolism regulating cell fate choice.


Subject(s)
Embryonic Stem Cells , Endoderm , Endoderm/metabolism , Cell Differentiation/genetics
4.
Exp Brain Res ; 241(11-12): 2735-2750, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37845379

ABSTRACT

Stroke is reported to be the second leading cause of death worldwide, among which ischemic stroke has fourfold greater incidence than intracerebral hemorrhage. Excitotoxicity induced by NMDAR plays a central role in ischemic stroke-induced neuronal death. However, intervention targeted NMDARs against ischemic stroke has failed, which may result from the complex composition of NMDARs and the dynamic changes of their subunits. In this current study, the levels of NR1, NR2A and NR2B subunits of NMDARs were observed upon different time points during the reperfusion after 1 h ischemia with the western blot assay. It was found that the changes of NR1 subunit were only detected after ischemia 1 h/reperfusion 1 day (1 d). While, the changes of NR2A and NR2B subunits may last to ischemia 1 h/reperfusion 7 day(7 d), indicating that NR2subunits may be a potential target for ischemia-reperfusion injuries at the sub-acute stage of ischemic stroke. Simultaneously, mitochondrial injuries in neurons were investigated with transmission electron microscopy (TEM), and mitochondrial dysfunction was evaluated with mitochondrial membrane proteins oxidative respiratory chain complex and OCR. When the antagonist of NMDARs was used before ischemic exposure, the neuronal mitochondrial dysfunction was alleviated, suggesting that these aberrant deviations of NMDARs from basal levels led to mitochondrial dysfunction. Furthermore, when the antagonist of NR2B was administrated intracerebroventricularly at the sub-acute cerebral ischemia, the volume of cerebral infarct region was decreased and the neural functions were improved. To sum up, the ratio of NR2B-containing NMDARs is vital for mitochondrial homeostasis and then neuronal survival. NR2B-targeted intervention should be chosen at the sub-acute stage of cerebral ischemia.


Subject(s)
Brain Ischemia , Ischemic Stroke , Humans , Brain Ischemia/complications , Brain Ischemia/drug therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Cerebral Infarction/metabolism , Ischemic Stroke/metabolism , Neurons/metabolism
5.
Front Cell Dev Biol ; 10: 850052, 2022.
Article in English | MEDLINE | ID: mdl-35547809

ABSTRACT

The SEPTIN12 gene has been associated with male infertility. Male Septin12 +/- chimera mice were infertile, supporting the prevailing view that SEPTIN12 haploinsufficiency causes male infertility. In this study, we identified a heterozygous mutation on SEPTIN12, c.72C>A (p.Cys24Ter) in the male partner of a patient couple, who had a previous fertilization failure (FF) after intracytoplasmic sperm injection (ICSI) and became pregnant after ICSI together with artificial oocyte activation (AOA). To investigate the role of SEPTIN12 in FF and oocyte activation, we constructed Septin12 knockout mice. Surprisingly, Septin12 -/- male mice, but not Septin12 +/- male mice, are infertile, and have reduced sperm counts and abnormal sperm morphology. Importantly, AOA treatment enhances the 2-cell embryo rate of ICSI embryos injected with Septin12 -/- sperm, indicating that FF caused by male Septin12 deficiency is overcome by AOA. Mechanistically, loss of PLCζ around the acrosome might be the reason for FF of Septin12 -/- sperm. Taken together, our data indicated that homozygous knockout of Septin12, but not Septin12 haploinsufficiency, leads to male infertility and FF.

6.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35608036

ABSTRACT

HBXIP, also named LAMTOR5, has been well characterized as a transcriptional co-activator in various cancers. However, the role of Hbxip in normal development remains unexplored. Here, we demonstrated that homozygous knockout of Hbxip leads to embryonic lethality, with retarded growth around E7.5, and that depletion of Hbxip compromises the self-renewal of embryonic stem cells (ESCs), with reduced expression of pluripotency genes, reduced cell proliferation and decreased colony-forming capacity. In addition, both Hbxip-/- ESCs and E7.5 embryos displayed defects in ectodermal and mesodermal differentiation. Mechanistically, Hbxip interacts with other components of the Ragulator complex, which is required for mTORC1 activation by amino acids. Importantly, ESCs depleted of Ragulator subunits, Lamtor3 or Lamtor4, displayed differentiation defects similar to those of Hbxip-/- ESCs. Moreover, Hbxip-/-, p14-/- and p18-/- mice, lacking subunits of the Ragulator complex, also shared similar phenotypes, embryonic lethality and retarded growth around E7-E8. Thus, we conclude that Hbxip plays a pivotal role in the development and differentiation of the epiblast, as well as the self-renewal and differentiation of ESCs, through activating mTORC1 signaling.


Subject(s)
Embryonic Development , Embryonic Stem Cells , Animals , Cell Differentiation/genetics , Embryonic Development/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Signal Transduction
7.
Nucleic Acids Res ; 49(20): 11596-11613, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34723322

ABSTRACT

Using the programmable RNA-sequence binding domain of the Pumilio protein, we FLAG-tagged Xist (inactivated X chromosome specific transcript) in live mouse cells. Affinity pulldown coupled to mass spectrometry was employed to identify a list of 138 candidate Xist-binding proteins, from which, Ssb (also known as the lupus autoantigen La) was validated as a protein functionally critical for X chromosome inactivation (XCI). Extensive XCI defects were detected in Ssb knockdown cells, including chromatin compaction, death of female mouse embryonic stem cells during in vitro differentiation and chromosome-wide monoallelic gene expression pattern. Live-cell imaging of Xist RNA reveals the defining XCI defect: Xist cloud formation. Ssb is a ubiquitous and versatile RNA-binding protein with RNA chaperone and RNA helicase activities. Functional dissection of Ssb shows that the RNA chaperone domain plays critical roles in XCI. In Ssb knockdown cells, Xist transcripts are unstable and misfolded. These results show that Ssb is critically involved in XCI, possibly as a protein regulating the in-cell structure of Xist.


Subject(s)
RNA Folding , RNA, Long Noncoding/chemistry , RNA-Binding Proteins/metabolism , X Chromosome Inactivation , Animals , Autoantigens/chemistry , Autoantigens/metabolism , Binding Sites , Cell Line , Mice , Protein Binding , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics
8.
Stem Cell Reports ; 14(3): 493-505, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32160522

ABSTRACT

Both 3D chromatin architecture and long non-coding RNAs (lncRNAs) play essential roles in pluripotency maintenance. However, whether lncRNAs are involved in organizing 3D chromatin structure remains largely unexplored. We identified 39 lncRNAs bound by Klf4, among which we further revealed the 5430416N02Rik promoter is a chromatin interaction hub. Knockout of the 5430416N02Rik locus reduces the proliferation rate of embryonic stem cells (ESCs). Moreover, deleting both the promoter and the gene body of 5430416N02Rik causes a more severe proliferation defect and has a more profound impact on the transcriptome than deleting the gene body alone. The reduced proliferation of the 5430416N02Rik locus knockout ESCs is mainly due to the downregulation of Mid1, the expression of which requires the inter-chromosomal interaction between Mid1 and 5430416N02Rik loci. In summary, our data demonstrated that the lncRNA 5430416N02Rik gene locus maintains the fast proliferation of ESCs by activating the expression of Mid1 through chromatin interaction.


Subject(s)
Chromatin/chemistry , Mouse Embryonic Stem Cells/cytology , RNA, Long Noncoding/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Proliferation/genetics , Chromatin/metabolism , Gene Expression Regulation, Developmental , Genetic Loci , Homozygote , Kruppel-Like Factor 4 , Mice , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Ubiquitin-Protein Ligases/genetics
9.
Proc Natl Acad Sci U S A ; 117(5): 2519-2525, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964807

ABSTRACT

The highly conserved COP9 signalosome (CSN), composed of 8 subunits (Cops1 to Cops8), has been implicated in pluripotency maintenance of human embryonic stem cells (ESCs). Yet, the mechanism for the CSN to regulate pluripotency remains elusive. We previously showed that Cops2, independent of the CSN, is essential for the pluripotency maintenance of mouse ESCs. In this study, we set out to investigate how Cops5 and Cops8 regulate ESC differentiation and tried to establish Cops5 and Cops8 knockout (KO) ESC lines by CRISPR/Cas9. To our surprise, no Cops5 KO ESC clones were identified out of 127 clones, while three Cops8 KO ESC lines were established out of 70 clones. We then constructed an inducible Cops5 KO ESC line. Cops5 KO leads to decreased expression of the pluripotency marker Nanog, proliferation defect, G2/M cell-cycle arrest, and apoptosis of ESCs. Further analysis revealed dual roles of Cops5 in maintaining genomic stability of ESCs. On one hand, Cops5 suppresses the autophagic degradation of Mtch2 to direct cellular metabolism toward glycolysis and minimize reactive oxygen species (ROS) production, thereby reducing endogenous DNA damage. On the other hand, Cops5 is required for high DNA damage repair (DDR) activities in ESCs. Without Cops5, elevated ROS and reduced DDR activities lead to DNA damage accumulation in ESCs. Subsequently, p53 is activated to trigger G2/M arrest and apoptosis. Altogether, our studies reveal an essential role of Cops5 in maintaining genome integrity and self-renewal of ESCs by regulating cellular metabolism and DDR pathways.


Subject(s)
COP9 Signalosome Complex/metabolism , DNA Repair , Embryonic Stem Cells/enzymology , Genomic Instability , Peptide Hydrolases/metabolism , Animals , Apoptosis , COP9 Signalosome Complex/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , G2 Phase Cell Cycle Checkpoints , Gene Knockout Techniques , Mice , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Oxidative Phosphorylation , Peptide Hydrolases/genetics , Reactive Oxygen Species/metabolism
11.
Endocr Relat Cancer ; 26(1): 153-164, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30139768

ABSTRACT

There is no effective treatment for patients with poorly differentiated papillary thyroid cancer or anaplastic thyroid cancer (ATC). Anlotinib, a multi-kinase inhibitor, has already shown antitumor effects in various types of carcinoma in a phase I clinical trial. In this study, we aimed to better understand the effect and efficacy of anlotinib against thyroid carcinoma cells in vitro and in vivo. We found that anlotinib inhibits the cell viability of papillary thyroid cancer and ATC cell lines, likely due to abnormal spindle assembly, G2/M arrest, and activation of TP53 upon anlotinib treatment. Moreover, anlotinib suppresses the migration of thyroid cancer cells in vitro and the growth of xenograft thyroid tumors in mice. Our data demonstrate that anlotinib has significant anticancer activity in thyroid cancer, and potentially offers an effective therapeutic strategy for patients of advanced thyroid cancer type.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use , Thyroid Cancer, Papillary/drug therapy , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Indoles/pharmacology , Male , Mice, Inbred BALB C , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism
12.
iScience ; 8: 1-14, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30266032

ABSTRACT

We double-tagged Xist (inactivated X chromosome-specific transcript), a prototype long non-coding RNA pivotal for X chromosome inactivation (XCI), using the programmable RNA sequence binding domain of Pumilio protein, one tag for live-cell imaging and the other replacing A-repeat (a critical domain of Xist) to generate "ΔA mutant" and to tether effector proteins for dissecting Xist functionality. Based on the observation in live cells that the induced XCI in undifferentiated embryonic stem (ES) cells is counteracted by the intrinsic X chromosome reactivation (XCR), we identified Kat8 and Msl2, homologs of Drosophila dosage compensation proteins, as players involved in mammalian XCR. Furthermore, live-cell imaging revealed the obviously undersized ΔA Xist cloud signals, clarifying an issue regarding the previous RNA fluorescence in situ hybridization results. Tethering candidate proteins onto the ΔA mutant reveals the significant roles of Ythdc1, Ezh2, and SPOC (Spen) in Xist-mediated gene silencing and the significant role of Ezh2 in Xist RNA spreading.

13.
Stem Cell Reports ; 11(2): 317-324, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30033083

ABSTRACT

Proper regulation of the cell cycle is essential to safeguard the genomic integrity of embryonic stem cells (ESCs) while maintaining the fast proliferation rate. The pluripotency factor OCT4 has been shown to inhibit CDK1 activation, thus preventing mitotic entry and facilitating the maintenance of genomic integrity. Yet, how ESCs enter mitosis in the presence of OCT4 remains unclear. We previously reported that COPS2 promotes the progression through the G2/M phase of mouse ESCs. In this study, through co-immunoprecipitation and mass spectrometric analysis, we found that COPS2 interacts with OCT4 and CDK1. We further demonstrated that COPS2 stimulates the activity of CDK1/CYCLIN B only when OCT4 is present. Consistently, COPS2 promotes the G2/M transition only in the presence of OCT4 in HeLa cells. Mechanistically, COPS2 attenuates the interaction between OCT4 and CDK1 by sequestering OCT4 and forming a COPS2/CDK1 complex, thus blocking the inhibitory effect of OCT4 on CDK1 activation.


Subject(s)
COP9 Signalosome Complex/metabolism , G2 Phase Cell Cycle Checkpoints , Mouse Embryonic Stem Cells/metabolism , Nuclear Proteins/metabolism , Octamer Transcription Factor-3/antagonists & inhibitors , Transcription Factors/metabolism , Animals , CDC2 Protein Kinase/metabolism , Gene Knockdown Techniques , Mice , Mouse Embryonic Stem Cells/cytology , Octamer Transcription Factor-3/metabolism , Protein Binding
14.
J Mol Biol ; 430(17): 2734-2746, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29800566

ABSTRACT

Xist (inactivated X chromosome specific transcript) is a prototype long noncoding RNA in charge of epigenetic silencing of one X chromosome in each female cell in mammals. In a genetic screen, we identify Mageb3 and its homologs Mageb1 and Mageb2 as genes functionally required for Xist-mediated gene silencing. Mageb1-3 are previously uncharacterized genes belonging to the MAGE (melanoma-associated antigen) gene family. Mageb1-3 are expressed in undifferentiated ES cells and early stages of in vitro differentiation, a critical time window of X chromosome inactivation. Mageb3 showed both cytoplasmic and nuclear localization without enrichment on the inactive X (Xi). Mageb3 interacted with Polycomb group ring finger 3 (Pcgf3), a RING finger protein involved in recruiting Polycomb activities onto Xi. Mageb3 overexpression stabilized Pcgf3 protein. Mageb1-3 gene knockout affected H3K27me3 enrichment and the spreading of gene silencing along Xi. These data suggested that Mageb3 might regulate the recruitment of the Polycomb complex onto Xi and subsequent H3K27me3 modification through Pcgf3. Moreover, the nucleolar enrichment of Mageb3 was diminished when nuclear matrix factor hnRNP U is overexpressed, implying the interaction between Mageb3 and nuclear matrix, which is another possible mechanism for Mageb3 to regulate X chromosome inactivation.


Subject(s)
Antigens, Neoplasm/metabolism , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Gene Silencing , Genome , Neoplasm Proteins/metabolism , RNA Interference , X Chromosome Inactivation , Animals , Antigens, Neoplasm/genetics , Cell Nucleus , Embryo, Mammalian/cytology , Fibroblasts/cytology , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , Male , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Subcellular Fractions , Transcription, Genetic
15.
Nucleic Acids Res ; 46(7): 3468-3486, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29447390

ABSTRACT

Embryonic stem cells (ESCs) and meiosis are featured by relatively higher frequent homologous recombination associated with DNA double strand breaks (DSB) repair. Here, we show that Pold3 plays important roles in DSB repair, telomere maintenance and genomic stability of both ESCs and spermatocytes in mice. By attempting to generate Pold3 deficient mice using CRISPR/Cas9 or transcription activator-like effector nucleases, we show that complete loss of Pold3 (Pold3-/-) resulted in early embryonic lethality at E6.5. Rapid DNA damage response and massive apoptosis occurred in both outgrowths of Pold3-null (Pold3-/-) blastocysts and Pold3 inducible knockout (iKO) ESCs. While Pold3-/- ESCs were not achievable, Pold3 iKO led to increased DNA damage response, telomere loss and chromosome breaks accompanied by extended S phase. Meanwhile, loss of Pold3 resulted in replicative stress, micronucleation and aneuploidy. Also, DNA repair was impaired in Pold3+/- or Pold3 knockdown ESCs. Moreover, Pold3 mediates DNA replication and repair by regulating 53BP1, RIF1, ATR and ATM pathways. Furthermore, spermatocytes of Pold3 haploinsufficient (Pold3+/-) mice with increasing age displayed impaired DSB repair, telomere shortening and loss, and chromosome breaks, like Pold3 iKO ESCs. These data suggest that Pold3 maintains telomere integrity and genomic stability of both ESCs and meiosis by suppressing replicative stress.


Subject(s)
DNA Polymerase III/genetics , DNA Replication/genetics , Embryonic Stem Cells/metabolism , Genomic Instability/genetics , Telomere/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA Repair/genetics , Meiosis/genetics , Mice, Knockout , Telomere-Binding Proteins/genetics , Tumor Suppressor p53-Binding Protein 1/genetics
16.
Nat Genet ; 50(3): 443-451, 2018 03.
Article in English | MEDLINE | ID: mdl-29483655

ABSTRACT

Ten-eleven translocation (TET) proteins play key roles in the regulation of DNA-methylation status by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), which can both serve as a stable epigenetic mark and participate in active demethylation. Unlike the other members of the TET family, TET2 does not contain a DNA-binding domain, and it remains unclear how it is recruited to chromatin. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules. We found that PSPC1 and TET2 contribute to ERVL and ERVL-associated gene regulation by both transcriptional repression via histone deacetylases and post-transcriptional destabilization of RNAs through 5hmC modification. Our findings provide evidence for a functional role of transcriptionally active ERVs as specific docking sites for RNA epigenetic modulation and gene regulation.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Endogenous Retroviruses/physiology , Nuclear Proteins/metabolism , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/physiology , Animals , Cells, Cultured , Chromatin/genetics , DNA Methylation , Dioxygenases , Epigenesis, Genetic/physiology , Female , HEK293 Cells , Humans , Male , Mice , Protein Binding
17.
Stem Cells Int ; 2017: 2601746, 2017.
Article in English | MEDLINE | ID: mdl-29109740

ABSTRACT

The CRISPR/Cas9 system provides a powerful method for the genetic manipulation of the mammalian genome, allowing knockout of individual genes as well as the generation of genome-wide knockout cell libraries for genetic screening. However, the diploid status of most mammalian cells restricts the application of CRISPR/Cas9 in genetic screening. Mammalian haploid embryonic stem cells (haESCs) have only one set of chromosomes per cell, avoiding the issue of heterozygous recessive mutations in diploid cells. Thus, the combination of haESCs and CRISPR/Cas9 facilitates the generation of genome-wide knockout cell libraries for genetic screening. Here, we review recent progress in CRISPR/Cas9 and haPSCs and discuss their applications in genetic screening.

19.
Development ; 144(21): 3957-3967, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28947533

ABSTRACT

The Hippo pathway modulates the transcriptional activity of Yap to regulate the differentiation of the inner cell mass (ICM) and the trophectoderm (TE) in blastocysts. Yet how Hippo signaling is differentially regulated in ICM and TE cells is poorly understood. Through an inhibitor/activator screen, we have identified Rho as a negative regulator of Hippo in TE cells, and PKA as a positive regulator of Hippo in ICM cells. We further elucidated a novel mechanism by which Rho suppresses Hippo, distinct from the prevailing view that Rho inhibits Hippo signaling through modulating cytoskeleton remodeling and/or cell polarity. Active Rho prevents the phosphorylation of Amot Ser176, thus stabilizing the interaction between Amot and F-actin, and restricting the binding between Amot and Nf2. Moreover, Rho attenuates the interaction between Amot and Nf2 by binding to the coiled-coil domain of Amot. By blocking the association of Nf2 and Amot, Rho suppresses Hippo in TE cells.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Neurofibromin 2/metabolism , Signal Transduction , rho GTP-Binding Proteins/metabolism , Actins/metabolism , Angiomotins , Animals , Cell Line , Cell Membrane/metabolism , Cell Polarity , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeleton/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Female , Intercellular Signaling Peptides and Proteins/chemistry , Mice, Inbred ICR , Microfilament Proteins/chemistry , Models, Biological , Phosphorylation , Protein Binding , Protein Domains , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...