Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1809, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418489

ABSTRACT

Further increasing the critical temperature and/or decreasing the stabilized pressure are the general hopes for the hydride superconductors. Inspired by the low stabilized pressure associated with Ce 4f electrons in superconducting cerium superhydride and the high critical temperature in yttrium superhydride, we carry out seven independent runs to synthesize yttrium-cerium alloy hydrides. The synthetic process is examined by the Raman scattering and X-ray diffraction measurements. The superconductivity is obtained from the observed zero-resistance state with the detected onset critical temperatures in the range of 97-141 K. The upper critical field towards 0 K at pressure of 124 GPa is determined to be between 56 and 78 T by extrapolation of the results of the electrical transport measurements at applied magnetic fields. The analysis of the structural data and theoretical calculations suggest that the phase of Y0.5Ce0.5H9 in hexagonal structure with the space group of P63/mmc is stable in the studied pressure range. These results indicate that alloying superhydrides indeed can maintain relatively high critical temperature at relatively modest pressures accessible by laboratory conditions.

2.
J Phys Condens Matter ; 36(7)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37918102

ABSTRACT

Clathrate hydrideFm3-m-LaH10has been proven as the most extraordinary superconductor with the critical temperatureTcabove 250 K upon compression of hundreds of GPa in recent years. A general hope is to reduce the stabilization pressure and maintain the highTcvalue of the specific phase in LaH10. However, strong structural instability distortsFm3-mstructure and leads to a rapid decrease ofTcat low pressures. Here, we investigate the phase stability and superconducting behaviors ofFm3-m-LaH10with enhanced chemical pre-compression through partly replacing La by Ce atoms from both experiments and calculations. For explicitly characterizing the synthesized hydride, we choose lanthanum-cerium alloy with stoichiometry composition of 1:1. X-ray diffraction and Raman scattering measurements reveal the stabilization ofFm3-m-La0.5Ce0.5H10in the pressure range of 140-160 GPa. Superconductivity withTcof 175 ± 2 K at 155 GPa is confirmed with the observation of the zero-resistivity state and supported by the theoretical calculations. These findings provide applicability in the future explorations for a large variety of hydrogen-rich hydrides.

3.
Adv Sci (Weinh) ; 9(14): e2105709, 2022 May.
Article in English | MEDLINE | ID: mdl-35293146

ABSTRACT

The electronic structure near the Fermi surface determines the electrical properties of the materials, which can be effectively tuned by external pressure. Bi0.5 Sb1.5 Te3 is a p-type thermoelectric material which holds the record high figure of merit at room temperature. Here it is examined whether the figure of merit of this model system can be further enhanced through some external parameter. With the application of pressure, it is surprisingly found that the power factor of this material exhibits λ behavior with a high value of 4.8 mW m-1 K-2 at pressure of 1.8 GPa. Such an enhancement is found to be driven by pressure-induced electronic topological transition, which is revealed by multiple techniques. Together with a low thermal conductivity of about 0.89 W m-1 K-1 at the same pressure, a figure of merit of 1.6 is achieved at room temperature. The results and findings highlight the electronic topological transition as a new route for improving the thermoelectric properties.

4.
Environ Toxicol ; 36(8): 1654-1663, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33969609

ABSTRACT

Iron metabolism has been shown to hand over cancer stem cell, which is regarded as the root of tumor progression, recurrence and chemoresistance. This study aims to explore whether iron metabolism is involved in etoposide- and cisplatin-induced stemness in small cell lung cancer (SCLC) cells. Here, analysis on tumor-sphere formation and stemness marker expression is performed to determine whether etoposide and cisplatin can induce SCLC cell stemness. Online dataset analysis is constructed to determine the correlation between iron transportation and the survival of lung cancer patients. Chromatin immunoprecipitation combined with rescuing experiments are carried out to reveal the underlying mechanisms. Additionally, the non-lethal doses of etoposide and cisplatin can induce SCLC cell stemness in a concentration-dependent manner and reduce the lysosome iron concentration dependent on Ferritin expression, which is positively regulated by HIF-1α/ß. Moreover, HIF-1α/ß can directly bind to Ferritin promoter region. This HIF/Ferritin axis is responsible for etoposide- and cisplatin-induced iron reduction in lysosomes and stemness of SCLC cells. This work demonstrates that iron in lysosomes is essential for etoposide and cisplatin-induced stemness of SCLC cells, which is regulated by the HIF/Ferritin axis.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Cisplatin , Etoposide , Humans , Lysosomes
5.
Acta Neurol Scand ; 143(2): 188-194, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32975833

ABSTRACT

OBJECTIVE: The fractional amplitude of low-frequency fluctuation (fALFF) method was used to identify the regional brain activity deficits of self-limited focal epilepsy with centrotemporal spikes (SLFECS) relative to normal controls (NCs). METHODS: A total of 21 SLFECS (10 females, 11 males; mean age, 8.57 ± 1.5 years) and 21 status-matched (age, sex, and education) NCs (10 females, 11 males; mean age, 8.76 ± 2.19 years) were recruited. The fALFF method was applied to identify SLFECS-related regional brain alterations. Receiver operating characteristic (ROC) curve was applied to identify the ability of these regional brain areas in distinguishing the SLFECS group from the NCs group. The relationships between the regional brain activity deficits and clinical features were evaluated by Pearson's correlation analysis. RESULTS: Self-limited focal epilepsy with centrotemporal spikes was associated with widespread regional brain activity alterations, including left cuneus with higher fALFF values, and bilateral striatum, bilateral precentral gyrus, ventral and dorsal pathway of sensory area, left dorsolateral prefrontal cortex, and left Rolandic area with lower fALFF values. ROC curve revealed excellent AUC value (0.964) of these areas in distinguishing the SLFECS group from the NCs group with high degree of sensitivity (90.5%) and specificity (95.2%). Intelligence quotient score positively correlated with the fALFF value in the left striatum (r = 0.453, p = 0.039). CONCLUSIONS: The fALFF parameter could be served as a potential biomarker to identify the SLFECS-related regional brain deficits in the sensorimotor cortex and their pathways, which may be the etiology of paresthesia in SLFECS.


Subject(s)
Epilepsies, Partial/physiopathology , Sensorimotor Cortex/physiopathology , Brain Waves , Child , Cortical Excitability , Female , Humans , Male
6.
Onco Targets Ther ; 13: 9731-9740, 2020.
Article in English | MEDLINE | ID: mdl-33061452

ABSTRACT

PURPOSE: Gastrointestinal neuroectodermal tumors (GNETs) are uncommon malignant tumors derived from ectodermal primitive neural cells. PATIENTS AND METHODS: We retrospectively analyzed 2 GNET cases at our hospital and the remaining 94 cases in the literature to determine clinicopathological prognostic factors. RESULTS: The patients had a mean age of 36 years and a median tumor size of 4.5 cm. A total of 67.0% of the tumors were located in the small intestine, and 76.4% of the patients presented recurrence or metastasis. There was a significant difference in sex and presence of osteoclast-like cells (P<0.01). Microscopically, most cells were round or short spindle-like in shape, with weak eosinophilic or clear cytoplasm. Neoplastic cells were always arranged in solid sheets, nests, and pseudoalveoli. Immunohistochemistry showed strong, diffuse S100 and SOX10 expression, with a complete absence of HMB45 and Melan-A expression. A total of 72.9% of the cases revealed genetic EWSR1 recombination, including our 2 cases. The median time to death and first metastasis was 61 months and 12 months, respectively. K-M analysis showed a great difference in survival according to lymph node invasion or distant metastasis (M+N), independent lymph node metastasis (N), lower histological grades (G2), and aggressive chemoradiotherapy (P=0.026, P=0.027, P=0.039 and P=0.037). However, independent T, independent M, and postoperative routine adjuvant therapy showed no statistical influence on overall survival or disease-free survival. CONCLUSION: GNET is a new entity distinct in its clinical, morphological, immunochemical, and genetic features. Radical excision, close follow-up and adjuvant therapy may be effective for prolonged survival.

7.
Nat Mater ; 18(12): 1321-1326, 2019 12.
Article in English | MEDLINE | ID: mdl-31591530

ABSTRACT

Alternative technologies are required in order to meet a worldwide demand for clean non-polluting energy sources. Thermoelectric generators, which generate electricity from heat in a compact and reliable manner, are potential devices for waste heat recovery. However, thermoelectric performance, as encapsulated by the figure of merit ZT, has remained at around 1.0 at room temperature, which has limited practical applications. Here, we study the effects of pressure on ZT in Cr-doped PbSe, which has a maximum ZT of less than 1.0 at a temperature of about 700 K. By applying external pressure using a diamond anvil cell, we obtained a room-temperature ZT value of about 1.7. From thermoelectric, magnetoresistance and Raman measurements, as well as density functional theory calculations, a pressure-driven topological phase transition is found to enable this enhancement. Experiments also support the appearance of a topological crystalline insulator after the transition. These findings point to the possibility of using compression to increase not just ZT in existing thermoelectric materials, but also the possibility of realizing topological crystalline insulators.

8.
Phys Chem Chem Phys ; 21(47): 25976-25981, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31637392

ABSTRACT

Organometallic compounds constitute a very large group of substances that contain at least one metal-to-carbon bond in which the carbon is part of an organic group. They have played a major role in the development of the science of chemistry. These compounds are used to a large extent as catalysts (substances that increase the rate of reactions without themselves being consumed) and as intermediates in the laboratory and in industry. Recently, novel quantum phenomena such as topological insulators and superconductors were also suggested in these materials. However, there has been no report on the experimental exploration of the topological state. Evidence for superconductivity from the zero-resistivity state in any organometallic compound has not been achieved yet, though much effort has been made. Here we report the experimental realization of superconductivity with a critical temperature of 3.6 K in a potassium-doped organometallic compound, i.e. tri-o-tolylbismuthine, with evidence of both the Meissner effect and the zero-resistivity state through dc and ac magnetic susceptibility measurements. The obtained superconducting parameters classify this compound as a type-II superconductor. The benzene ring is identified to be the essential superconducting unit in such a phenyl organometallic compound. The superconducting phase and its composition are determined by combined studies of X-ray diffraction and theoretical calculations as well as Raman spectroscopy measurements. These findings enrich the applications of organometallic compounds in superconductivity and add a new electron-acceptor family of organic superconductors. This work also points to a large pool for finding superconductors from organometallic compounds.

9.
J Phys Condens Matter ; 30(15): 155703, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29521274

ABSTRACT

An extended study on PdS is carried out with the measurements of the resistivity, Hall coefficient, Raman scattering, and x-ray diffraction at high pressures up to 42.3 GPa. With increasing pressure, superconductivity is observed accompanying with a structural phase transition at around 19.5 GPa. The coexistence of semiconducting and metallic phases observed at normal state is examined by the Raman scattering and x-ray diffraction between 19.5 and 29.5 GPa. After that, only the metallic normal state maintains with an almost constant superconducting transition temperature. The similar evolution between the superconducting transition temperature and carrier concentration with pressure supports the phonon-mediated superconductivity in this material. These results highlight the important role of pressure played in inducing superconductivity from these narrow band-gap semiconductors.

10.
RSC Adv ; 8(24): 13154-13158, 2018 Apr 09.
Article in English | MEDLINE | ID: mdl-35542507

ABSTRACT

Measurement of the electrical, thermal, and structural properties of palladium sulfide (PdS) has been conducted in order to investigate its thermoelectric performance. A tetragonal structure with the space group P42/m for PdS was determined from X-ray diffraction measurement. The obtained power factor of 27 µW cm-1 K-2 at 800 K is the largest value obtained for the transition metal sulfides studied so far. The maximum value of the dimensionless figure of merit is 0.33 at 800 K. These results indicate that binary bulk PdS has promising potential for good thermoelectric performance.

11.
Sci Rep ; 7(1): 5673, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720845

ABSTRACT

In this work, we investigate the pulsation of an electrically charged jet surrounded by an immiscible dielectric liquid in flow-focusing capillary microfluidics. We have characterized a low-frequency large-amplitude pulsation and a high-frequency small-amplitude pulsation, respectively. The former, due to the unbalanced charge and fluid transportation is responsible for generating droplets with a broad size distribution. The latter is intrinsic and produces droplets with a relatively narrow size distribution. Moreover, the average size of the final droplets can be tuned via the intrinsic pulsating frequency through changing the diameter of the emitted liquid jet. Our results provide degree of control over the emulsion droplets with submicron sizes generated in microfluidic-electrospray platform.

12.
J Phys Chem B ; 119(44): 14245-51, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26465251

ABSTRACT

Room temperature ionic liquids (RTILs) have intriguing high-pressure phase behavior, and investigation of how pressure affects phase transitions of RTILs might yield interesting results. We here present kinetically driven phase transitions of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Emim][CF3SO3]) at different rates of ∼0.3 and ∼1.2 GPa/h up to ∼5 GPa. Two crystalline phases formed at ∼1.3 and ∼1.7 GPa with increasing pressure at lower compression rate of ∼0.3 GPa/h; however, the amorphous phase solidified with superpressurized glass above ∼3.3 GPa at higher compression rate of ∼1.2 GPa/h. Notably, crystal polymorphism is discussed in view of the conformational isomerism of [Emim](+) cation and an unknown cation conformer is observed. These facts indicate that kinetic effect on pressure-induced phase transitions of [Emim][CF3SO3] might be dependent on compression rate, which needs to be considered as a non-negligible factor for phase transitions of RTILs under high pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...