Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
JCI Insight ; 9(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973609

ABSTRACT

Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.


Subject(s)
Down-Regulation , Hypertriglyceridemia , Lipoprotein Lipase , Receptor, PAR-2 , Animals , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/genetics , Mice , Humans , Receptor, PAR-2/metabolism , Receptor, PAR-2/genetics , Male , Mice, Knockout , Triglycerides/metabolism , Triglycerides/blood , Adipose Tissue, White/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Adipocytes/metabolism , Obesity/metabolism , Obesity/genetics , Palmitic Acid/metabolism , Female , Mice, Inbred C57BL , Middle Aged
2.
Front Cell Infect Microbiol ; 14: 1390934, 2024.
Article in English | MEDLINE | ID: mdl-38812753

ABSTRACT

Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 µg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 µg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Poultry Diseases , Animals , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Antimicrobial Peptides/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cathelicidins
3.
Am J Hum Biol ; : e24073, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38549543

ABSTRACT

OBJECTIVES: The spatial distribution of Chinese surnames is diverse and provides rich information about the evolution of human society. This study aims to propose several indices to quantify the spatial distribution characteristics of Chinese common surnames and to explore how these distributions are related to historical evolution. METHODS: This study uses data from China's ID information system covering 1.28 billion people across 362 cities. Based on the location quotient, several new concepts, such as "moderately concentrated cities" and "highly concentrated cities," are defined. Then indices such as range, ununiformity and spatial autocorrelation are proposed and calculated to analyze the spatial characteristics of Chinese common surnames. RESULTS: A significant correlation is observed between the commonness of a surname and its spatial characteristics: the more common the surname, the wider its spatial range, the lower the ununiformity, and the higher the autocorrelation coefficient. These patterns reflect the complex interplay of historical, geographical, and cultural factors influencing surname spatial distribution. CONCLUSIONS: The spatial distribution of Chinese surnames is intricately linked to their historical evolution. Most common surnames, often with deeper historical roots, exhibit wider distributions and lower ununiformity, whereas less common surnames show higher concentrations in specific areas. These quantitative results provide a comprehensive understanding of the evolutionary characteristics of Chinese surnames.

4.
Environ Int ; 183: 108352, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041984

ABSTRACT

In this study, we conducted comprehensive organophosphorus flame retardant (PFR) exposure assessments of both dietary and non-dietary pathways in a rural population in southern China. Skin wipes were collected from 30 volunteers. Indoor and outdoor air (gas and particles), dust in the houses of these volunteers, and foodstuffs consumed by these volunteers were simultaneously collected. The total PFR concentrations in dust, gas, and PM2.5 varied from 53.8 to 5.14 × 105 ng/g, 0.528 to 4.27 ng/m3, and 0.390 to 16.5 ng/m3, respectively. The forehead (median of 1.36 × 103 ng/m2) and hand (median of 920 ng/m2) exhibited relatively high PFR concentrations, followed by the forearm (median of 440 ng/m2) and upper arm (median of 230 ng/m2). The PFR concentrations in the food samples varied from 0.0700 to 10.9 ng/g wet weight in the order of egg > roast duck/goose and vegetable > pork > chicken > fish. Tris(1-chloro-isopropyl) phosphate (TCPP) was the main PFR in the non-diet samples, whereas the profiles of PFR individuals varied by food type. Among the multiple pathways investigated (inhalation, dermal exposure, dust ingestion, and food ingestion), dermal absorption and dust ingestion were the predominant pathways for tris(2-chloroethyl) phosphate (TCEP) and bisphenol A-bis(diphenyl phosphate) (BDP), respectively, whereas dietary exposure was the most important route for other chemicals.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Animals , Humans , Flame Retardants/analysis , Organophosphorus Compounds/analysis , Organophosphates/analysis , Phosphates , Dust/analysis , China , Air Pollution, Indoor/analysis , Environmental Exposure/analysis
5.
Mol Metab ; 79: 101834, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935315

ABSTRACT

Attenuation of adipose hormone sensitive lipase (HSL) may impair lipolysis and exacerbate obesity. We investigate the role of cytokine, macrophage migration inhibitory factor (MIF) in regulating adipose HSL and adipocyte hypertrophy. Extracellular MIF downregulates HSL in an autocrine fashion, by activating the AMPK/JNK signaling pathway upon binding to its membrane receptor, CD74. WT mice fed high fat diet (HFD), as well as mice overexpressing MIF, both had high circulating MIF levels and showed suppression of HSL during the development of obesity. Blocking the extracellular action of MIF by a neutralizing MIF antibody significantly reduced obesity in HFD mice. Interestingly, intracellular MIF binds with COP9 signalosome subunit 5 (Csn5) and JNK, which leads to an opposing effect to inhibit JNK phosphorylation. With global MIF deletion, adipocyte JNK phosphorylation increased, resulting in decreased HSL expression, suggesting that the loss of MIF's intracellular inhibitory action on JNK was dominant in Mif-/- mice. Adipose tissue from Mif-/- mice also exhibited higher Akt and lower PKA phosphorylation following HFD feeding compared with WT, which may contribute to the downregulation of HSL activation during more severe obesity. Both intracellular and extracellular MIF have opposing effects to regulate HSL, but extracellular actions predominate to downregulate HSL and exacerbate the development of obesity during HFD.


Subject(s)
Macrophage Migration-Inhibitory Factors , Animals , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Obesity/metabolism , Sterol Esterase/metabolism
6.
iScience ; 26(6): 106923, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37283810

ABSTRACT

While insulin resistance (IR) is associated with inflammation in white adipose tissue, we report a non-inflammatory adipose mechanism of high fat-induced IR mediated by loss of Pref-1. Pref-1, released from adipose Pref-1+ cells with characteristics of M2 macrophages, endothelial cells or progenitors, inhibits MIF release from both Pref-1+ cells and adipocytes by binding with integrin ß1 and inhibiting the mobilization of p115. High palmitic acid induces PAR2 expression in Pref-1+ cells, downregulating Pref-1 expression and release in an AMPK-dependent manner. The loss of Pref-1 increases adipose MIF secretion contributing to non-inflammatory IR in obesity. Treatment with Pref-1 blunts the increase in circulating plasma MIF levels and subsequent IR induced by a high palmitic acid diet. Thus, high levels of fatty acids suppress Pref-1 expression and secretion, through increased activation of PAR2, resulting in an increase in MIF secretion and a non-inflammatory adipose mechanism of IR.

7.
Curr Med Sci ; 43(1): 80-85, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36602673

ABSTRACT

OBJECTIVE: The prevalence of carbapenem-resistant Klebsiella pneumoniae (CR-KP) is a global public health problem. It is mainly caused by the plasmid-carried carbapenemase gene. Outer membrane vesicles (OMVs) contain toxins and other factors involved in various biological processes, including ß-lactamase and antibiotic-resistance genes. This study aimed to reveal the transmission mechanism of OMV-mediated drug resistance of Klebsiella (K.) pneumoniae. METHODS: We selected CR-KP producing K. pneumoniae carbapenemase-2 (KPC-2) to study whether they can transfer resistance genes through OMVs. The OMVs of CR-KP were obtained by ultracentrifugation, and incubated with carbapenem-sensitive K. pneumoniae for 4 h. Finally, the carbapenem-sensitive K. pneumoniae was tested for the presence of blaKPC-2 resistance gene and its sensitivity to carbapenem antibiotics. RESULTS: The existence of OMVs was observed by the electron microscopy. The extracted OMVs had blaKPC-2 resistance gene. After incubation with OMVs, blaKPC-2 resistance gene was detected in sensitive K. pneumoniae, and it became resistant to imipenem and meropenem. CONCLUSION: This study demonstrated that OMVs isolated from KPC-2-producing CR-KP could deliver blaKPC-2 to sensitive K. pneumoniae, allowing the bacteria to produce carbapenemase, which may provide a novel target for innovative therapies in combination with conventional antibiotics for treating carbapenem-resistant Enterobacteriaceae.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/microbiology , beta-Lactamases/genetics , Anti-Bacterial Agents/therapeutic use , Carbapenems
8.
Toxics ; 10(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36548610

ABSTRACT

Chlorinated paraffins (CPs), a class of persistent, toxic, and bioaccumulated compounds, have received increasing attention for their environmental occurrence and ecological and human health risks worldwide in the past decades. Understanding the environmental behavior and fate of CPs faces a huge challenge owing to the extremely complex CP congeners. Consequently, the aims of the present study are to summarize and integrate the bioaccumulation and biotransformation of CPs, including the occurrence of CPs in biota, tissue distribution, biomagnification, and trophic transfer, and biotransformation of CPs in plants, invertebrates, and vertebrates in detail. Biota samples collected in China showed higher CP concentrations than other regions, which is consistent with their huge production and usage. The lipid content is the major factor that determines the physical burden of CPs in tissues or organs. Regarding the bioaccumulation of CPs and their influence factors, inconsistent results were obtained. Biotransformation is an important reason for this variable. Some CP congeners are readily biodegradable in plants, animals, and microorganisms. Hydroxylation, dechlorination, chlorine rearrangement, and carbon chain decomposition are potential biotransformation pathways for the CP congeners. Knowledge of the influence of chain length, chlorination degree, constitution, and stereochemistry on the tissue distribution, bioaccumulation, and biotransformation is still scarce.

9.
Metabolites ; 12(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36557327

ABSTRACT

Anthocyanins are water-soluble pigments that can impart various colors to plants. Purple shamrock (Oxalis triangularis) possesses unique ornamental value due to its purple leaves. In this study, three anthocyanins, including malvidin 3-O-(4-O-(6-O-malonyl-glucopyranoside)-rhamnopyranosyl)-5-O-(6-O-malonyl-glucopyranoside), delphinidin-3-O-rutinoside and malvidin-3,5-di-O-glucoside, were characterized with ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in purple shamrock. To investigate the molecular mechanism of anthocyanin biosynthesis in green shamrock (Oxalis corymbosa) and purple shamrock, RNA-seq and qRT-PCR were performed, and the results showed that most of the anthocyanin biosynthetic and regulatory genes were up-regulated in purple shamrock. Then, dark treatment and low temperature treatment experiments in purple shamrock showed that both light and low temperature can induce the biosynthesis of anthocyanins.

10.
Sci Total Environ ; 851(Pt 2): 158261, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36030865

ABSTRACT

Short chain chlorinated paraffins (SCCPs) are emerging persistent organic pollutants of great concern due to their ubiquitous distribution in the environment. However, little information is available on the biotransformation of SCCPs in organisms. In this study, a chlorinated decane: 1, 2, 5, 5, 6, 9, 10-heptachlorodecanes (HeptaCDs) was subjected to in vitro metabolism by human and chicken liver microsomes at environmentally relevant concentration. Using ultra-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry, two metabolites: monohydroxylated hexachlorodecane (HO-HexCD) and monohydroxy heptachlorodecane (HO-HeptaCD) were detected in human liver microsomal assays, while only one metabolite (HO-HexCD) was identified in chicken liver microsomal assays. The formation of HO-HexCD was fitted to a Michaelis-Menten model for chicken liver microsomes with a Vmax (maximum metabolic rate) value of 4.52 pmol/mg/min. Metabolic kinetic parameters could not be obtained for human liver microsomes as steady state conditions were not reached under our experimental conditions. Notwithstanding this, the observed average biotransformation rate of HeptaCDs was much faster for human liver microsomes than for chicken liver microsomes. Due to the lack of authentic standards for the identified metabolites, the detailed structure of each metabolite could not be confirmed due to the possibility of conformational isomers. This study provides first insights into the biotransformation of SCCPs, providing potential biomarkers and enhancing understanding of bioaccumulation studies.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Animals , Humans , Paraffin/analysis , Chickens , Microsomes, Liver , Environmental Monitoring/methods , Persistent Organic Pollutants , Hydrocarbons, Chlorinated/analysis , China
11.
Plant Sci ; 317: 111193, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35193742

ABSTRACT

Pigmentation of various components leads to different colors in tulip flowers. To understand the molecular basis of the petal coloration in tulip, integrative analyses of the pigment components and transcriptome profiles were conducted on four tulip cultivars with different petal colors. A total of four major anthocyanins and 46 carotenoids were identified. The anthocyanin cyanidin 3-O-galactoside showed markedly higher abundances in the B cultivar than in the other varieties, and among the 46 kinds of carotenoids, (E/Z)-phytoene, violaxanthin myristate and violaxanthin palmitate were the major components. The RNA-seq and qRT-PCR results indicated that the pigment accumulation was linked to the expression of genes involved in the anthocyanin and carotenoid biosynthesis pathways. Yeast two-hybrid (Y2H) assays showed the interaction between different regulator factors in tulip MYB-bHLH-WD40 (MBW) complexes. Co-expression analyses of genes were performed, which include anthocyanin and carotenoid biosynthesis genes and transcription factors involved in MYB, bHLH, WRKY, AUX-IAA and MADS-box. The co-expression network and related analysis provide a basis for the discovery of color regulatory factors. Taken together, our study sheds light on the anthocyanin and carotenoid synthesis pathways and candidate regulatory transcription factors underlying flower coloration and shows the potential of flower breeding or pigments engineering in tulips.


Subject(s)
Tulipa , Anthocyanins/metabolism , Color , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Pigmentation/genetics , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Tulipa/metabolism
12.
Curr Microbiol ; 78(8): 3201-3211, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34213616

ABSTRACT

Cellulase plays an important role in addressing the issue of the energy crisis. However, the yield and degradation efficiency of cellulase remain a major challenge. In the present study, we aimed to verify whether ammonium ion (NH4+) could induce cellulase synthesis from T. koningii AS3.2774 and to explore new functional genes related to the cellulase production. Our results indicated that NH4+ induces cellulase production in a way different from nitrogen sources. NH4+-mediated mycelia displayed a significant increase in transport vesicles. Under NH4+ mediation, CBHI, CBHII, glycoside hydrolase family 5 proteins, Hap2/3/5 complexes, "ribosome biogenesis", and "heme binding" were significantly up-regulated, and differentially expressed genes (DEGs) were mainly involved in "Metabolism". Collectively, our findings illustrated that NH4+ induced the cellulase production at morphological and gene expression levels, which might be related to the Hap2/3/5 complex, ribosomes, and genes involved in various amino acid metabolism, pyruvate metabolism, and glycolysis/gluconeogenesis. Taken together, our results provided valuable insights into the regulatory network of cellulase gene expression in filamentous fungi.


Subject(s)
Ammonium Compounds , Cellulase , Trichoderma , Cellulase/genetics , Cellulase/metabolism , Gene Expression Regulation, Fungal , Hypocreales , Ions , Trichoderma/genetics , Trichoderma/metabolism
13.
Financ Res Lett ; 382021 Jan.
Article in English | MEDLINE | ID: mdl-33551688

ABSTRACT

Rank mobility, which was designed to measure the average variation of relative rank positions with respect to any absolute variable over a given time period, can be used to explore how the memory of stock price ranking orders fades over time. We investigate the variation in rank order of the closing prices of stocks registered at the Shanghai A-share market over a long period of 16 years. And we find that rank mobility increases as a power law with increasing time scale, and eventually converges to a constant level. This power-law relationship can be observed not only over a long period of 16 years but also for each consecutive year, especially their power law exponents are very close. The empirical evidence indicates a fundamental dynamics of Chinese stock price movements.

14.
Arthritis Res Ther ; 23(1): 59, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33610191

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is the most prevalent form of arthritis and the major cause of disability and overall diminution of quality of life in the elderly population. Currently there is no cure for OA, partly due to the large gaps in our understanding of its underlying molecular and cellular mechanisms. Macrophage migration inhibitory factor (MIF) is a procytokine that mediates pleiotropic inflammatory effects in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, data on the role of MIF in OA is limited with conflicting results. We undertook this study to investigate the role of MIF in OA by examining MIF genotype, mRNA expression, and protein levels in the Newfoundland Osteoarthritis Study. METHODS: One hundred nineteen end-stage knee/hip OA patients, 16 RA patients, and 113 healthy controls were included in the study. Two polymorphisms in the MIF gene, rs755622, and -794 CATT5-8, were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR followed by automated capillary electrophoresis, respectively. MIF mRNA levels in articular cartilage and subchondral bone were measured by quantitative polymerase chain reaction. Plasma concentrations of MIF, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) were measured by enzyme-linked immunosorbent assay. RESULTS: rs755622 and -794 CATT5-8 genotypes were not associated with MIF mRNA or protein levels or OA (all p ≥ 0.19). MIF mRNA level in cartilage was lower in OA patients than in controls (p = 0.028) and RA patients (p = 0.004), while the levels in bone were comparable between OA patients and controls (p = 0.165). MIF protein level in plasma was lower in OA patients than in controls (p = 3.01 × 10-10), while the levels of TNF-α, IL-6 and IL-1ß in plasma were all significantly higher in OA patients than in controls (all p ≤ 0.0007). Multivariable logistic regression showed lower MIF and higher IL-1ß protein levels in plasma were independently associated with OA (OR per SD increase = 0.10 and 8.08; 95% CI = 0.04-0.19 and 4.42-16.82, respectively), but TNF-α and IL-6 became non-significant. CONCLUSIONS: Reduced MIF mRNA and protein expression in OA patients suggested MIF might have a protective role in OA and could serve as a biomarker to differentiate OA from other joint disorders.


Subject(s)
Arthritis, Rheumatoid , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Osteoarthritis , Aged , Humans , Macrophage Migration-Inhibitory Factors/genetics , Quality of Life , Tumor Necrosis Factor-alpha/genetics
15.
Pain ; 162(2): 600-608, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32833795

ABSTRACT

ABSTRACT: Musculoskeletal pain often occurs simultaneously at multiple anatomical sites. The aim of the study was to identify metabolic biomarkers for multisite musculoskeletal pain (MSMP) by metabolomics with an extreme phenotype sampling strategy. The study participants (n = 610) were derived from the Newfoundland Osteoarthritis Study. Musculoskeletal pain was assessed using a self-reported pain questionnaire where painful sites were circled on a manikin by participants and the total number of painful sites were calculated. Targeted metabolomic profiling on fasting plasma samples was performed using the Biocrates AbsoluteIDQ p180 kit. Plasma cytokine concentrations including tumor necrosis factor-α, interleukin-6, interleukin-1ß, and macrophage migration inhibitory factor were assessed by enzyme-linked immunosorbent assay. Data on blood cholesterol profiles were retrieved from participants' medical records. Demographic, anthropological, and clinical information was self-reported. The number of reported painful sites ranged between 0 and 21. Two hundred and five participants were included in the analysis comprising 83 who had ≥7 painful sites and 122 who had ≤1 painful site. Women and younger people were more likely to have MSMP (P ≤ 0.02). Multisite musculoskeletal pain was associated with a higher risk of having incontinence, worse functional status and longer period of pain, and higher levels of low-density lipoprotein and non-high-density lipoprotein cholesterol (all P ≤ 0.03). Among the 186 metabolites measured, 2 lysophosphatidylcholines, 1 with 26 carbons with no double bond and 1 with 28 carbons with 1 double bond, were significantly and positively associated with MSMP after adjusting for multiple testing with the Bonferroni method (P ≤ 0.0001) and could be considered as novel metabolic markers for MSMP.


Subject(s)
Musculoskeletal Pain , Female , Humans , Lysophosphatidylcholines , Metabolomics , Pain Measurement , Phenotype
16.
Virol Sin ; 35(1): 73-82, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31637632

ABSTRACT

Prototype foamy virus (PFV) is a unique retrovirus that infects animals and humans and does not cause clinical symptoms. Long noncoding RNAs (lncRNAs) are believed to exert multiple regulatory functions during viral infections. Previously, we utilized RNA sequencing (RNA-seq) to characterize and identify the lncRNA lnc-RP5-1086D14.3.1-1:1 (lnc-RP5), which is markedly decreased in PFV-infected cells. However, little is known about the function of lnc-RP5 during PFV infection. In this study, we identified lnc-RP5 as a regulator of the PFV transcriptional transactivator (Tas). Lnc-RP5 enhanced the activity of the PFV internal promoter (IP). The expression of PFV Tas was found to be promoted by lnc-RP5. Moreover, miR-129-5p was found to be involved in the lnc-RP5-mediated promotion of PFV IP activity, while the Notch1 protein suppressed the activity of PFV IP and the expression of Tas. Our results demonstrate that lnc-RP5 promotes the expression of PFV Tas through the miR-129-5p/Notch1/PFV IP axis. This work provides evidence that host lncRNAs can manipulate PFV replication by employing miRNAs and proteins during an early viral infection.


Subject(s)
Host Microbial Interactions/genetics , MicroRNAs/genetics , Receptor, Notch1/genetics , Spumavirus/genetics , Trans-Activators/genetics , Viral Proteins/genetics , Cell Line , Gene Expression Regulation , HEK293 Cells , Humans , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Sequence Analysis, RNA
17.
Article in English | MEDLINE | ID: mdl-31781513

ABSTRACT

This study aimed to design a new method for rapid and accurate detection of carbapenemase phenotypes based on the simplified carbapenem inactivation method (sCIM). We evaluated the sensitivity and specificity of the method, called the rapid carbapenemase detection method (rCDM), for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. A total of 257 Enterobacteriaceae, 236 P. aeruginosa, and 20 Acinetobacter baumannii isolates were tested. Phenotypic evaluations were performed using rCDM, sCIM, and mCIM. For Enterobacteriaceae, the sensitivity of rCDM was 100% and the specificity was 99.6%. For P. aeruginosa, the sensitivity of rCDM was 97.4% and the specificity was 100%. Carbapenemase-producing A. baumannii were not detected by rCDM. The concordance rate of rCDM and sCIM for Enterobacteriaceae and P. aeruginosa was 99.8%, with the exception of one P. aeruginosa isolate that expressed the blaVIM-4 gene. The concordance rate of rCDM and mCIM for Enterobacteriaceae and P. aeruginosa was 100%. rCDM can be used to accurately detect carbapenemase-producing Enterobacteriaceae and P. aeruginosa in 5-6 h and is suitable for routine use in most clinical microbiology laboratories.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae/classification , Carbapenem-Resistant Enterobacteriaceae/genetics , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/microbiology , Pseudomonas Infections/diagnosis , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Sensitivity and Specificity
18.
Am J Phys Anthropol ; 169(4): 608-618, 2019 08.
Article in English | MEDLINE | ID: mdl-31140593

ABSTRACT

OBJECTIVE: We propose an index to characterize the key feature of Chinese surname distributions and investigate its implications for population structure and dynamics. MATERIALS AND METHODS: The surname dataset was obtained from the National Citizen Identity Information Center, which contains 1.28 billion Chinese citizens enrolled in 2007, excluding those of Hong Kong, Macao, and Taiwan. An index, the coverage ratio of stretched exponential distribution (CRSED), is proposed based on the crossover point of stretched exponential truncated power-law distribution, where the stretched exponential term and the power-law term contribute equally. We use multidimensional scaling technique to demonstrate the dependence of the similarity of one prefecture to the others on the CRSED. RESULTS: The CRSEDs of 362 prefectures exhibit an uneven distribution. The consistency of this index is evident by strong positive correlations of CRSEDs at the three administrative levels. This new index has a strong negative correlation with the proportion of the rare surnames. The prefectures with similar CRSEDs tend to adjoin each other on the administrative map, resulting in several distinct regions, each of which shares similar terrain features or historical migrations. The prefectures with lower CRSEDs are more dissimilar to the other prefectures, while the ones with higher CRSEDs are more similar to the others. DISCUSSION: The population dynamics of the prefectures with higher CRSEDs are more likely dominated by migratory movements, the dominant evolutionary forces of the prefectures with lower CRSEDs can be attributed to drift and mutation.


Subject(s)
Asian People/statistics & numerical data , Human Migration/statistics & numerical data , Names , Population Dynamics/statistics & numerical data , China/epidemiology , Humans , Taiwan/epidemiology
19.
Mar Drugs ; 16(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071655

ABSTRACT

Sargassum fusifrome is considered a "longevity vegetable" in Asia. Sargassum fusifrome polysaccharides exhibit numerous biological activities, specially, the modulation of immune response via the NF-κB signaling pathway. However, the precise mechanisms by which these polysaccharides modulate the immune response through the NF-κB signaling pathway have not been elucidated. In this study, we purified and characterized a novel fraction of Sargassum fusifrome polysaccharide and named it SFP-F2. SFP-F2 significantly upregulated the production of the cytokines TNF-α, IL-1ß and IL-6 in RAW264.7 cells. It also activated the NF-κB signaling pathway. Data obtained from experiments carried out with specific inhibitors (PDTC, BAY 11-7082, IKK16 and SB203580) suggested that SFP-F2 activated the NF-κB signaling pathway via CD14/IKK and P38 axes. SFP-F2 could therefore potentially exert an immune-enhancement effect through inducing the CD14/IKK/NF-κB and P38/NF-κB signaling pathways.


Subject(s)
CD13 Antigens/metabolism , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Polysaccharides/pharmacology , Sargassum/chemistry , Animals , CD13 Antigens/genetics , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Mice , Polysaccharides/chemistry , RAW 264.7 Cells , Signal Transduction/drug effects
20.
Braz. j. microbiol ; 49(2): 232-239, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889220

ABSTRACT

Abstract Biofertilizer Ning shield was composed of different strains of plant growth promotion bacteria. In this study, the plant growth promotion and root-knot nematode disease control potential on Trichosanthes kirilowii in the field were evaluated. The application of Ning shield significantly reduced the diseases severity caused by Meloidogyne incognita, the biocontrol efficacy could reached up to 51.08%. Ning shield could also promote the growth of T. kirilowii in the field by increasing seedling emergence, height and the root weight. The results showed that the Ning shield could enhance the production yield up to 36.26%. Ning shield could also promote the plant growth by increasing the contents of available nitrogen, phosphorus, potassium and organic matter, and increasing the contents of leaf chlorophyll and carotenoid pigment. Moreover, Ning shield could efficiently enhance the medicinal compositions of Trichosanthes, referring to the polysaccharides and trichosanthin. Therefore, Ning shield is a promising biofertilizer, which can offer beneficial effects to T. kirilowii growers, including the plant growth promotion, the biological control of root-knot disease and enhancement of the yield and the medicinal quality.


Subject(s)
Animals , Plant Diseases/therapy , Tylenchoidea/growth & development , Plant Roots/parasitology , Trichosanthes/growth & development , Trichosanthes/parasitology , Agriculture/methods , Fertilizers , Plant Growth Regulators/analysis , Trichosanthes/chemistry , Plant Development
SELECTION OF CITATIONS
SEARCH DETAIL
...