Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299343

ABSTRACT

Polypropylene-fiber-reinforced foamed concrete (PPFRFC) is often used to reduce building structure weight and develop engineering material arresting systems (EMASs). This paper investigates the dynamic mechanical properties of PPFRFC with densities of 0.27 g/cm3, 0.38 g/cm3, and 0.46 g/cm3 at high temperatures and proposes a prediction model to characterize its behavior. To conduct the tests on the specimens over a wide range of strain rates (500~1300 s-1) and temperatures (25~600 °C), the conventional split-Hopkinson pressure bar (SHPB) apparatus was modified. The test results show that the temperature has a substantial effect on the strain rate sensitivity and density dependency of the PPFRFC. Additionally, the analysis of failure models demonstrates that with the melting of polypropylene fibers, the level of damage in PPFRFC under dynamic loading increases, resulting in the generation of a greater number of fragments.

2.
Polymers (Basel) ; 10(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30961204

ABSTRACT

In this work, the quasi-static and dynamic mechanical behavior of directional polymethylmethacrylate is investigated under conditions of uniaxial compression and tension. The main purpose of this investigation is to discuss the effect of strain rate and temperature on the deformation characteristics and failure of such material. Research was carried out with the use of an electric universal testing machine and split Hopkinson bars, which were equipped with high- and low-temperature control systems. The experimental methods for studying the tensile and compressive response of polymer materials under different testing conditions were validated by one-dimensional stress wave theory and digital-image correlation technique. The finite deformation stress⁻strain behaviors of the samples under different loading condition were obtained with a constant temperature ranging from 218 to 373 K. The experimental results showed that the uniaxial tensile and compressive behaviors of directional polymethylmethacrylate under finite deformation are strongly dependent on temperature, decreased tensile and compressive stress of the material under different strain levels, and increased temperature. Meanwhile, the dynamic tensile and compressive stresses of the material are much higher than the quasi-static stresses, showing the strain-rate strengthening effect. Moreover, the tensile and compressive mechanical behavior of directional polymethylmethacrylate has significant asymmetry. Finally, a visco-hyperelastic model is established to predict the rate-dependence mechanical behavior of directional polymethylmethacrylate at different temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...