Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 624, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902601

ABSTRACT

Radish exhibits significant variation in color, particularly in sprouts, leaves, petals, fleshy roots, and other tissues, displaying a range of hues such as green, white, red, purple, and black. Although extensive research has been conducted on the color variation of radish, the underlying mechanism behind the variation in radish flower color remains unclear. To date, there is a lack of comprehensive research investigating the variation mechanism of radish sprouts, leaves, fleshy roots, and flower organs. This study aims to address this gap by utilizing transcriptome sequencing to acquire transcriptome data for white and purple radish flowers. Additionally, the published transcriptome data of sprouts, leaves, and fleshy roots were incorporated to conduct a systematic analysis of the regulatory mechanisms underlying anthocyanin biosynthesis in these four radish tissues. The comparative transcriptome analysis revealed differential expression of the anthocyanin biosynthetic pathway genes DFR, UGT78D2, TT12 and CPC in the four radish tissues. Additionally, the WGCNA results identified RsDFR.9c and RsUGT78D2.2c as hub genes responsible for regulating anthocyanin biosynthesis. By integrating the findings from the comparative transcriptome analysis, WGCNA, and anthocyanin biosynthetic pathway-related gene expression patterns, it is hypothesized that genes RsDFR.9c and RsUGT78D2.2c may serve as pivotal regulators of anthocyanins in the four radish tissues. Furthermore, the tissue-specific expression of the four copies of RsPAP1 is deemed crucial in governing anthocyanin synthesis and accumulation. Our results provide new insights into the molecular mechanism of anthocyanin biosynthesis and accumulation in different tissues of radish.


Subject(s)
Anthocyanins , Gene Expression Profiling , Gene Expression Regulation, Plant , Raphanus , Raphanus/genetics , Raphanus/metabolism , Anthocyanins/biosynthesis , Anthocyanins/genetics , Transcriptome , Biosynthetic Pathways/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/metabolism
2.
BMC Plant Biol ; 24(1): 52, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229007

ABSTRACT

BACKGROUND: MYB transcription factors are splay a vital role in plant biology, with previous research highlighting the significant impact of the R2R3-MYB-like transcription factor MYB5 on seed mucilage biosynthesis, trichome branching, and seed coat development. However, there is a dearth of studies investigating its role in the regulation of proanthocyanidin (PA) biosynthesis. RESULTS: In this study, a total of 51 MYB5 homologous genes were identified across 31 species belonging to the Brassicaceae family, with particular emphasis on Brassica napus for subsequent investigation. Through phylogenetic analysis, these genes were categorized into four distinct subclasses. Protein sequence similarity and identity analysis demonstrated a high degree of conservation of MYB5 among species within the Brassicaceae family. Additionally, the examination of selection pressure revealed that MYB5 predominantly underwent purifying selection during its evolutionary history, as indicated by the Ka/Ks values of all MYB5 homologous gene pairs being less than one. Notably, we observed a higher rate of non-synonymous mutations in orthologous genes compared to paralogous genes, and the Ka/Ks value displayed a stronger correlation with Ka. In B. napus, an examination of expression patterns in five tissues revealed that MYB5 exhibited particularly high expression in the black seed coat. The findings from the WGCNA demonstrated a robust correlation between MYB5 and BAN(ANR) associated with PA biosynthesis in the black seed coat, providing further evidence of their close association and co-expression. Furthermore, the results obtained from of the analysis of protein interaction networks offer supplementary support for the proposition that MYB5 possesses the capability to interact with transcriptional regulatory proteins, specifically TT8 and TT2, alongside catalytic enzymes implicated in the synthesis of PAs, thereby making a contribution to the biosynthesis of PAs. These findings imply a plausible and significant correlation between the nuique expression pattern of MYB5 and the pigmentation of rapeseed coats. Nevertheless, additional research endeavors are imperative to authenticate and substantiate these findings. CONCLUSIONS: This study offers valuable insights into the genetic evolution of Brassicaceae plants, thereby serving as a significant reference for the genetic enhancement of Brassicaceae seed coat color.


Subject(s)
Arabidopsis , Brassica napus , Brassica napus/genetics , Brassica napus/metabolism , Arabidopsis/genetics , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Seeds , Gene Expression Regulation, Plant
3.
Plant Biotechnol J ; 17(6): 1106-1118, 2019 06.
Article in English | MEDLINE | ID: mdl-30467941

ABSTRACT

Brassica napus (An An Cn Cn ) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (Ar Ar ) and 74 accessions of Brassica carinata (Bc Bc Cc Cc ) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high-throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.


Subject(s)
Brassica napus , Brassica rapa , Genome, Plant , Brassica napus/genetics , Brassica rapa/genetics , Crops, Agricultural/genetics , Gene Pool , Genetic Variation , Genome, Plant/genetics , Phenotype
4.
Front Plant Sci ; 9: 375, 2018.
Article in English | MEDLINE | ID: mdl-29725340

ABSTRACT

Cadmium is a potentially toxic heavy metal to human health. Rapeseed (Brassica napus L.), a vegetable and oilseed crop, might also be a Cd hyperaccumulator, but there is little information on this trait in rapeseed. We evaluated Cd accumulation in different oilseed accessions and employed a genome-wide association study to identify quantitative trait loci (QTLs) related to Cd accumulation. A total of 419 B. napus accessions and inbred lines were genotyped with a 60K Illumina Infinium SNP array of Brassica. Wide genotypic variations in Cd concentration and translocation were found. Twenty-five QTLs integrated with 98 single-nucleotide polymorphisms (SNPs) located at 15 chromosomes were associated with Cd accumulation traits. These QTLs explained 3.49-7.57% of the phenotypic variation observed. Thirty-two candidate genes were identified in these genomic regions, and they were 0.33-497.97 kb away from the SNPs. We found orthologs of Arabidopsis thaliana located near the significant SNPs on the B. napus genome, including NRAMP6 (natural resistance-associated macrophage protein 6), IRT1 (iron-regulated transporter 1), CAD1 (cadmium-sensitive 1), and PCS2 (phytochelatin synthase 2). Of them, four candidate genes were verified by qRT-PCR, the expression levels of which were significantly higher after exposure to Cd than in the controls. Our results might facilitate the study of the genetic basis of Cd accumulation and the cloning of candidate Cd accumulation genes, which could be used to help reduce Cd levels in edible plant parts and/or create more efficient hyperaccumulators.

5.
Front Plant Sci ; 8: 593, 2017.
Article in English | MEDLINE | ID: mdl-28491067

ABSTRACT

Soil salinity is a serious threat to agriculture sustainability worldwide. Salt tolerance at the seedling stage is crucial for plant establishment and high yield in saline soils; however, little information is available on rapeseed (Brassica napus L.) salt tolerance. We evaluated salt tolerance in different rapeseed accessions and conducted a genome-wide association study (GWAS) to identify salt tolerance-related quantitative trait loci (QTL). A natural population comprising 368 B. napus cultivars and inbred lines was genotyped with a Brassica 60K Illumina Infinium SNP array. The results revealed that 75 single-nucleotide polymorphisms (SNPs) distributed across 14 chromosomes were associated with four salt tolerance-related traits. These SNPs integrated into 25 QTLs that explained 4.21-9.23% of the phenotypic variation in the cultivars. Additionally, 38 possible candidate genes were identified in genomic regions associated with salt tolerance indices. These genes fell into several functional groups that are associated with plant salt tolerance, including transcription factors, aquaporins, transporters, and enzymes. Thus, salt tolerance in rapeseed involves complex molecular mechanisms. Our results provide valuable information for studying the genetic control of salt tolerance in B. napus seedlings and may facilitate marker-based breeding for rapeseed salt tolerance.

6.
Theor Appl Genet ; 121(8): 1431-40, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20607208

ABSTRACT

Allopolyploidy plays an important role in plant evolution and confers obvious advantages on crop growth and breeding compared to low ploidy levels. The present investigation was aimed at synthesising the first known chromosomally stable hexaploid Brassica with the genome constitution AABBCC. More than 2,000 putative hexaploid plants were obtained through large-scale hybridisation from various combinations of crosses between different cultivars of Brassica carinata (BBCC) and B. rapa (AA). The majority of plants after two generations of selfing within selected hexaploid plants (H(2)) were aneuploid, and only 80 plants (4.6%) had the expected hexaploid chromosome number (2n = 54). The hexaploid ratio increased to an average of 23.0 and 26.3% in the H(3) and H(4) generations, respectively, and was accompanied by an increase in pollen fertility. The appearance of aneuploid plants in each generation could be detected having various chromosomal abnormalities at meiosis. The frequency of hexaploid plants varied significantly among different cultivar combinations, from 0 to 56% in the H(4) generation, and it showed a positive correlation with pollen fertility. The frequency of SSR allelic fragments lost or novel alleles gained was significantly lower in H(4) than in H(2) and H(3), which reflects increasing genome stability in H(4). The A and C genomes were significantly less stable than the B genome, which may mainly result from frequent homoeologous pairing and rearrangements between the A and C genomes. Methods to establish a stable hexaploid Brassica crop by intercrossing these lines followed by intensive selection are also discussed.


Subject(s)
Brassica/genetics , Chromosomal Instability/genetics , Crosses, Genetic , Genome, Plant/genetics , Polyploidy , Chromosome Pairing/genetics , Chromosomes, Plant/genetics , Fertility , Genetic Variation , Genetics, Population , Meiosis , Pedigree , Pollen/cytology , Pollen/genetics
7.
Theor Appl Genet ; 121(6): 1141-50, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20556596

ABSTRACT

Intersubgenomic heterosis in rapeseed has been revealed in previous studies by using traditional Brassica napus (A(n)A(n)C(n)C(n)) to cross partial new type B. napus with A(r)/C(c) introgression from the genomes of B. rapa and B. carinata, respectively. To further enlarge the genetic basis of B. napus and to facilitate a sustained heterosis breeding in rapeseed, it is crucial to create a population for substantial new type B. napus diversified at both A/C genomes. In this experiment, hundreds of artificial hexaploid plants (A(r)A(r)B(c)B(c)C(c)C(c)) involving hundreds of B. carinata/B. rapa combinations were first crossed with elite lines of partial new type B. napus. The pentaploid plants (AABCC) were open-pollinated in isolated conditions, and their offspring were successively self-pollinated and intensively selected for two generations. Thereafter, a population of substantial new type B. napus mainly with a genomic composition of A(r)A(r)C(c)C(c) harbouring genetic diversity from 25 original cultivars of B. rapa and 72 accessions of B. carinata was constructed. The population was cytologically verified to have the correct chromosome constitution of AACC and differed genetically from traditional B. napus, in terms of the genome components of A(r)/C(c) and B(c) as well as the novel genetic variations induced by the interspecific hybridisation process. Synchronously, rich phenotypic variation with plenty of novel valuable traits was observed in the population. The origin of the novel variations and the value of the population are discussed.


Subject(s)
Brassica napus/genetics , Genome , Brassica rapa/genetics , Breeding , Genetic Variation , Genotype , Hybrid Vigor , Hybridization, Genetic , Microsatellite Repeats , Phenotype , Pollen/cytology , Pollen/genetics , Pollen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...