Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684806

ABSTRACT

Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 µm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.

2.
Opt Lett ; 48(16): 4269-4271, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582009

ABSTRACT

Quantum photonic circuits have recently attracted much attention owing to the potential to achieve exceptional performance improvements over conventional classical electronic circuits. Second-order χ(2) nonlinear processes play an important role in the realization of several key quantum photonic components. However, owing to their centrosymmetric nature, CMOS-compatible materials including silicon (Si) and germanium (Ge) traditionally do not possess the χ(2) response. Recently, second-harmonic generation (SHG) that requires the χ(2) response was reported in Ge, but no attempts at enhancing the SHG signal have been conducted and proven experimentally. Herein, we demonstrate the effect of strain on SHG from Ge by depositing a silicon nitride (Si3N4) stressor layer on Ge-on-insulator (GOI) microdisks. This approach allows the deformation of the centrosymmetric unit cell structure of Ge, which can further enhance the χ(2) nonlinear susceptibility for SHG emission. The experimental observation of SHG under femtosecond optical pumping indicates a clear trend of enhancement in SHG signals with increasing strain. Such improvements boost conversion efficiencies by 300% when compared to the control counterpart. This technique paves the way toward realizing a CMOS-compatible material with nonlinear characteristics, presenting unforeseen opportunities for its integration in the semiconductor industry.

3.
Nat Commun ; 14(1): 4393, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474549

ABSTRACT

Nanowires are promising platforms for realizing ultra-compact light sources for photonic integrated circuits. In contrast to impressive progress on light confinement and stimulated emission in III-V and II-VI semiconductor nanowires, there has been no experimental demonstration showing the potential to achieve strong cavity effects in a bottom-up grown single group-IV nanowire, which is a prerequisite for realizing silicon-compatible infrared nanolasers. Herein, we address this limitation and present an experimental observation of cavity-enhanced strong photoluminescence from a single Ge/GeSn core/shell nanowire. A sufficiently large Sn content ( ~ 10 at%) in the GeSn shell leads to a direct bandgap gain medium, allowing a strong reduction in material loss upon optical pumping. Efficient optical confinement in a single nanowire enables many round trips of emitted photons between two facets of a nanowire, achieving a narrow width of 3.3 nm. Our demonstration opens new possibilities for ultrasmall on-chip light sources towards realizing photonic-integrated circuits in the underexplored range of short-wave infrared (SWIR).

4.
Adv Sci (Weinh) ; 10(17): e2207611, 2023 06.
Article in English | MEDLINE | ID: mdl-37072675

ABSTRACT

The technology to develop a large number of identical coherent light sources on an integrated photonics platform holds the key to the realization of scalable optical and quantum photonic circuits. Herein, a scalable technique is presented to produce identical on-chip lasers by dynamically controlled strain engineering. By using localized laser annealing that can control the strain in the laser gain medium, the emission wavelengths of several GeSn one-dimensional photonic crystal nanobeam lasers are precisely matched whose initial emission wavelengths are significantly varied. The method changes the GeSn crystal structure in a region far away from the gain medium by inducing Sn segregation in a dynamically controllable manner, enabling the emission wavelength tuning of more than 10 nm without degrading the laser emission properties such as intensity and linewidth. The authors believe that the work presents a new possibility to scale up the number of identical light sources for the realization of large-scale photonic-integrated circuits.

5.
Opt Lett ; 48(3): 735-738, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723576

ABSTRACT

Despite having achieved drastically improved lasing characteristics by harnessing tensile strain, the current methods of introducing a sizable tensile strain into GeSn lasers require complex fabrication processes, thus reducing the viability of the lasers for practical applications. The geometric strain amplification is a simple technique that can concentrate residual and small tensile strain into localized and large tensile strain. However, the technique is not suitable for GeSn due to the intrinsic compressive strain introduced during the conventional epitaxial growth. In this Letter, we demonstrate the geometrical strain amplification in GeSn by employing a tensile strained GeSn-on-insulator (GeSnOI) substrate. This work offers exciting opportunities in developing practical wavelength-tunable lasers for realizing fully integrated photonic circuits.

6.
Opt Lett ; 47(9): 2174-2177, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35486753

ABSTRACT

Strain-engineered graphene has garnered much attention recently owing to the possibilities of creating substantial energy gaps enabled by pseudo-magnetic fields (PMFs). While theoretical works proposed the possibility of creating large-area PMFs by straining monolayer graphene along three crystallographic directions, clear experimental demonstration of such promising devices remains elusive. Herein, we experimentally demonstrate a triaxially strained suspended graphene structure that has the potential to possess large-scale and quasi-uniform PMFs. Our structure employs uniquely designed metal electrodes that function both as stressors and metal contacts for current injection. Raman characterization and tight-binding simulations suggest the possibility of achieving PMFs over a micrometer-scale area. Current-voltage measurements confirm an efficient current injection into graphene, showing the potential of our devices for a new class of optoelectronic applications. We also theoretically propose a photonic crystal-based laser structure that obtains strongly localized optical fields overlapping with the spatial area under uniform PMFs, thus presenting a practical route toward the realization of graphene lasers.

7.
Opt Express ; 29(18): 28959-28967, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615016

ABSTRACT

GeSn alloys offer a promising route towards a CMOS compatible light source and the realization of electronic-photonic integrated circuits. One tactic to improve the lasing performance of GeSn lasers is to use a high Sn content, which improves the directness. Another popular approach is to use a low to moderate Sn content with either compressive strain relaxation or tensile strain engineering, but these strain engineering techniques generally require optical cavities to be suspended in air, which leads to poor thermal management. In this work, we develop a novel dual insulator GeSn-on-insulator (GeSnOI) material platform that is used to produce strain-relaxed GeSn microdisks stuck on a substrate. By undercutting only one insulating layer (i.e., Al2O3), we fabricate microdisks sitting on SiO2, which attain three key properties for a high-performance GeSn laser: removal of harmful compressive strain, decent thermal management, and excellent optical confinement. We believe that an increase in the Sn content of GeSn layers on our platform can allow us to achieve improved lasing performance.

8.
Nat Commun ; 12(1): 5087, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429419

ABSTRACT

The creation of pseudo-magnetic fields in strained graphene has emerged as a promising route to investigate intriguing physical phenomena that would be unattainable with laboratory superconducting magnets. The giant pseudo-magnetic fields observed in highly deformed graphene can substantially alter the optical properties of graphene beyond a level that can be feasible with an external magnetic field, but the experimental signatures of the influence of such pseudo-magnetic fields have yet to be unveiled. Here, using time-resolved infrared pump-probe spectroscopy, we provide unambiguous evidence for slow carrier dynamics enabled by the pseudo-magnetic fields in periodically strained graphene. Strong pseudo-magnetic fields of ~100 T created by non-uniform strain in  graphene on nanopillars are found to significantly decelerate the relaxation processes of hot carriers by more than an order of magnitude. Our findings offer alternative opportunities to harness the properties of graphene enabled by pseudo-magnetic fields for optoelectronics and condensed matter physics.

9.
Opt Express ; 29(10): 14174-14181, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985141

ABSTRACT

The creation of CMOS compatible light sources is an important step for the realization of electronic-photonic integrated circuits. An efficient CMOS-compatible light source is considered the final missing component towards achieving this goal. In this work, we present a novel crossbeam structure with an embedded optical cavity that allows both a relatively high and fairly uniform biaxial strain of ∼0.9% in addition to a high-quality factor of >4,000 simultaneously. The induced biaxial strain in the crossbeam structure can be conveniently tuned by varying geometrical factors that can be defined by conventional lithography. Comprehensive photoluminescence measurements and analyses confirmed that optical gain can be significantly improved via the combined effect of low temperature and high strain, which is supported by a three-fold reduction of the full width at half maximum of a cavity resonance at ∼1,940 nm. Our demonstration opens up the possibility of further improving the performance of germanium lasers by harnessing geometrically amplified biaxial strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...