Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Appl Acarol ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150623

ABSTRACT

The two-spotted spider mite (Tetranychus urticae Koch, TSSM) is recognized as one of the most problematic spider mite pests. However, the precise gene expression patterns across its key developmental stages remain elusive. Here, we performed a comprehensive transcriptome analysis of TSSM eggs, nymphs and adult females using publicly available RNA sequencing (RNA-seq) data to elucidate the overarching transcriptomic differences between these developmental stages. Principal component analysis and hierarchical clustering analysis unveiled distinct separations among samples across different developmental stages, regardless of their Wolbachia infection status. Differential expression analysis revealed 4,089,2,762, and 1,282 core genes specifically enriched in eggs, nymphs, and adults, respectively. KEGG and GO enrichment analyses showed upregulation of genes in eggs are associated with proteolysis, Wnt signaling pathway, DNA transcription, RNA biosynthetic and metabolic processes, as well as protein folding, sorting, and degradation pathways. Meanwhile, nymphs exhibited increased abundance of genes related to chitin/amino sugar metabolic processes, G protein-coupled receptor signaling pathways, monoatomic ion transport, and neurotransmitter transport pathways. Pathways involving sphingolipid and carbohydrate metabolic processes, proteolysis, lipid transport, and localization were particularly enriched in older females. Altogether, our findings suggest that the egg stage exhibits higher activity in cell differentiation processes, the nymph stage is more involved in chitin development, and the adult stage shows increased metabolic and reproductive activity. This study enhances our understanding of the molecular mechanisms underlying TSSM development and paves the way for further research into the intricate physiological processes of TSSM.

2.
Shock ; 49(2): 126-130, 2018 02.
Article in English | MEDLINE | ID: mdl-28727609

ABSTRACT

Trauma remains a tremendous medical burden partly because of increased expenditure for the management of multiple organ dysfunction syndrome (MODS) developed during hospital stay. The intestinal barrier injury continues to be a second insult resulting in MODS which currently lacks efficient strategies for prevention. Recent studies have uncovered multi-organ protective benefits of atrial natriuretic peptide (ANP) in cardiovascular disease. However, the role of ANP in the prevention of MODS following severe trauma has not been understood. In our laboratory study, 1-h infusion of exogenous ANP during hemorrhagic shock following severe trauma induced high-level expression of endogenous serum ANP after 24 h, this effect was related to the improved level of functional biomarkers in multiple organs. Such phenomenon has not been found in other laboratories. A thorough literature review consequently was performed to uncover the potential mechanisms, to appraise therapy safety, and to propose uncertainties. In severe trauma, short-term exogenous ANP therapy during hemorrhagic shock may promote sustained endogenous expression of ANP from intestinal epithelium through activating a positive feedback loop mechanism involving phospholipase C-γ1 and reactive oxygen species crosstalk. This feedback loop may prevent MODS through multiple signaling pathways. Administration of ANP during hemorrhagic shock is thought to be safe. Further studies are required to confirm our proposed mechanisms and to investigate the dose, duration, and timing of ANP therapy in severe trauma.


Subject(s)
Atrial Natriuretic Factor/blood , Multiple Organ Failure/blood , Multiple Organ Failure/etiology , Wounds and Injuries/complications , Atrial Natriuretic Factor/therapeutic use , Biomarkers/blood , Cardiovascular Diseases/blood , Humans , Multiple Organ Failure/prevention & control , Shock, Hemorrhagic/blood , Wounds and Injuries/blood
SELECTION OF CITATIONS
SEARCH DETAIL