Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37627796

ABSTRACT

Dental X-ray images are important and useful for dentists to diagnose dental diseases. Utilizing deep learning in dental X-ray images can help dentists quickly and accurately identify common dental diseases such as periodontitis and dental caries. This paper applies image processing and deep learning technologies to dental X-ray images to propose a simultaneous recognition method for periodontitis and dental caries. The single-tooth X-ray image is detected by the YOLOv7 object detection technique and cropped from the periapical X-ray image. Then, it is processed through contrast-limited adaptive histogram equalization to enhance the local contrast, and bilateral filtering to eliminate noise while preserving the edge. The deep learning architecture for classification comprises a pre-trained EfficientNet-B0 and fully connected layers that output two labels by the sigmoid activation function for the classification task. The average precision of tooth detection using YOLOv7 is 97.1%. For the recognition of periodontitis, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve is 98.67%, and the AUC of the precision-recall (PR) curve is 98.38%. For the recognition of dental caries, the AUC of the ROC curve is 98.31%, and the AUC of the PR curve is 97.55%. Different from the conventional deep learning-based methods for a single disease such as periodontitis or dental caries, the proposed approach can provide the recognition of both periodontitis and dental caries simultaneously. This recognition method presents good performance in the identification of periodontitis and dental caries, thus facilitating dental diagnosis.

2.
J Ophthalmol ; 2018: 2159702, 2018.
Article in English | MEDLINE | ID: mdl-30275989

ABSTRACT

Entropy images, representing the complexity of original fundus photographs, may strengthen the contrast between diabetic retinopathy (DR) lesions and unaffected areas. The aim of this study is to compare the detection performance for severe DR between original fundus photographs and entropy images by deep learning. A sample of 21,123 interpretable fundus photographs obtained from a publicly available data set was expanded to 33,000 images by rotating and flipping. All photographs were transformed into entropy images using block size 9 and downsized to a standard resolution of 100 × 100 pixels. The stages of DR are classified into 5 grades based on the International Clinical Diabetic Retinopathy Disease Severity Scale: Grade 0 (no DR), Grade 1 (mild nonproliferative DR), Grade 2 (moderate nonproliferative DR), Grade 3 (severe nonproliferative DR), and Grade 4 (proliferative DR). Of these 33,000 photographs, 30,000 images were randomly selected as the training set, and the remaining 3,000 images were used as the testing set. Both the original fundus photographs and the entropy images were used as the inputs of convolutional neural network (CNN), and the results of detecting referable DR (Grades 2-4) as the outputs from the two data sets were compared. The detection accuracy, sensitivity, and specificity of using the original fundus photographs data set were 81.80%, 68.36%, 89.87%, respectively, for the entropy images data set, and the figures significantly increased to 86.10%, 73.24%, and 93.81%, respectively (all p values <0.001). The entropy image quantifies the amount of information in the fundus photograph and efficiently accelerates the generating of feature maps in the CNN. The research results draw the conclusion that transformed entropy imaging of fundus photographs can increase the machinery detection accuracy, sensitivity, and specificity of referable DR for the deep learning-based system.

SELECTION OF CITATIONS
SEARCH DETAIL
...