Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Hazard Mater ; 449: 131040, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36821906

ABSTRACT

Cd accumulation in crops has become a global environmental problem because it endangers human health. Screening for microorganisms that can reduce Cd accumulation in crops is a possible measure to address this issue. However, success has been limited, and most previous work did not involve bacteria. In the present study, a strain of N-fixing bacteria (Burkholderia spp.) that exhibits high levels of Cd tolerance was screened. The ability of this bacterium to reduce Cd in rapeseed was then assessed in sterile hydroponic and open soil culture systems. In the hydroponic system, the Burkholderia inoculum promoted Cd fixation in rapeseed roots and thus reduced Cd enrichment in aboveground edible tissues (leaves). The mechanisms were related to increased activity of pectin methylesterase in root cell walls, and the transformation of the chemical form of root Cd from "active" (NaCl-extracted) to "inert" (HCl-extracted and residual Cd) states. Additionally, Burkholderia accelerated plant growth, thus shortening the period in which the plant is available for Cd absorption. In the soil culture system, Burkholderia also reduced Cd enrichment in rapeseed leaves in the presence of other microorganisms. Thus, the bacterial strain shows potential for broad application for reducing the accumulation of Cd in crops.


Subject(s)
Brassica napus , Brassica rapa , Soil Pollutants , Humans , Cadmium/toxicity , Plant Roots/chemistry , Crops, Agricultural , Soil , Soil Pollutants/analysis
2.
Entropy (Basel) ; 21(4)2019 Apr 13.
Article in English | MEDLINE | ID: mdl-33267110

ABSTRACT

In this study, we designed and fabricated NbTiAlSiZrNx high-entropy alloy (HEA) films. The parameters of the radio frequency (RF) pulse magnetron sputtering process were fixed to maintain the N2 flux ratio at 0%, 10%, 20%, 30%, 40%, and 50%. Subsequently, NbTiAlSiZrNx HEA films were deposited on the 304 stainless steel (SS) substrate. With an increasing N2 flow rate, the film deposited at a RN of 50% had the highest hardness (12.4 GPa), the highest modulus (169 GPa), a small roughness, and a beautiful color. The thicknesses of the films were gradually reduced from 298.8 nm to 200 nm, and all the thin films were of amorphous structure. The electrochemical corrosion resistance of the film in a 0.5 mol/L H2SO4 solution at room temperature was studied and the characteristics changed. The HEA films prepared at N2 flow rates of 10% and 30% were more prone to corrosion than 304 SS, but the corrosion rate was lower than that of 304 SS. NbTiAlSiZrNx HEA films prepared at N2 flow rates of 20%, 40%, and 50% were more corrosion-resistant than 304 SS. In addition, the passivation stability of the NbTiAlSiZrNx HEA was worse than that of 304 SS. Altogether, these results show that pitting corrosion occurred on NbTiAlSiZrNx HEA films.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(3): 814-9, 2015 Mar.
Article in Chinese | MEDLINE | ID: mdl-26117903

ABSTRACT

At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation point). There is a difference each other of the structure and the texture of the four manner annealing aluminum alloy (the innovation point). There is a little difference at the recrystallization processes course reflectived by the observe results of structure transform and by the examination results of texture transmission.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(9): 2574-8, 2013 Sep.
Article in Chinese | MEDLINE | ID: mdl-24369675

ABSTRACT

To provide gist of DC AA 5052 and CC AA 5052 aluminum alloy to industry production and application, the texture variation of cold rolled sheets through thickness direction was studied by X-ray diffraction method, and the difference in texture at surface, quarter and center layer was analyzed. The hot plates of direct chill cast (DC) AA 5052 and continuous cast (CC) AA 5052 aluminum alloy were annealed at 454 degrees C for 4 hours and then cold rolled to different reductions. The strength and volume fraction of the fiber in CC AA 5052 aluminum alloy is larger than in DC AA 5052 aluminum alloy after same rolling reduction The volume fraction of the recrystallization texture cube in the CC AA 5052 aluminum alloy is less than in the DC AA 5052 aluminum alloy, which result in that CC AA 5052 aluminum alloy needs less cold rolling reduction than DC AA 5052 aluminum alloy for generating the texture with same intensity and volume fraction at surface layer, quarter layer and center layer. The manufacturability and performance of CC AA 5052 aluminum alloy is superior to DC AA 5052 aluminum alloy for use in stamping.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(5): 1364-8, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23905353

ABSTRACT

For improvement of the processing and gaining uniformity texture structure and performance of direct chill cast CCAA 5052 aluminum alloy band after first hot rolling with different reduction, the material was annealed at 454 degrees C and then cold rolling with different reduction was conducted, the texture at surface, quarter and center layer of the sample was tested and examined by X-ray diffraction method, the data calculated using special software and the difference of texture at surface, quarter and center layer was analyzed. There existed an elevated gradient of intensity from surface layer to center layer after cold rolled with less than or equal to 40% reduction, The main texture of beta is stronger mainly due to transformation from remainder exposure, while the goss and remainder is infirm, the state of texture at each layer is close to each other after cold rolling with reduction high than 56.1%.

SELECTION OF CITATIONS
SEARCH DETAIL
...