Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Int J Biol Macromol ; 271(Pt 1): 132544, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782318

ABSTRACT

The lobed leaves of rapeseed (Brassica napus L.) offer significant advantages in dense planting, leading to increased yield. Although AtWIP2, a C2H2 zinc finger transcription factor, acts as a regulator of leaf development in Arabidopsis thaliana, the function and regulatory mechanisms of BnaWIP2 in B. napus remain unclear. Here, constitutive expression of the BnaC06.WIP2 paralog, predominantly expressed in leaf serrations, produced lobed leaves in both A. thaliana and B. napus. We demonstrated that BnaC06.WIP2 directly repressed the expression of BnaA01.TCP4, BnaA03.TCP4, and BnaC03.TCP4 and indirectly inhibited the expression of BnaA05.BOP1 and BnaC02.AS2 to promote leaf lobe formation. On the other hand, we discovered that BnaC06.WIP2 modulated the levels of endogenous gibberellin, cytokinin, and auxin, and controlled the auxin distribution in B. napus leaves, thus accelerating leaf lobe formation. Meanwhile, we revealed that BnaA09.STM physically interacted with BnaC06.WIP2, and ectopic expression of BnaA09.STM generated smaller and lobed leaves in B. napus. Furthermore, we found that BnaC06.WIP2 and BnaA09.STM synergistically promoted leaf lobe formation through forming transcriptional regulatory module. Collectively, our findings not only facilitate in-depth understanding of the regulatory mechanisms underlying lobed leaf formation, but also are helpful for guiding high-density breeding practices through improving leaf morphology in B. napus.

2.
Plant Physiol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687890

ABSTRACT

Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.

3.
J Integr Plant Biol ; 66(1): 121-142, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38146678

ABSTRACT

Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds. Thus far, the transcriptional regulatory mechanisms that govern seed oil accumulation remain largely unknown. Here, we identified the transcriptional regulatory network composed of MADS-box transcription factors SEEDSTICK (STK) and SEPALLATA3 (SEP3), which bridges several key genes to regulate oil accumulation in seeds. We found that STK, highly expressed in the developing embryo, positively regulates seed oil accumulation in Arabidopsis (Arabidopsis thaliana). Furthermore, we discovered that SEP3 physically interacts with STK in vivo and in vitro. Seed oil content is increased by the SEP3 mutation, while it is decreased by SEP3 overexpression. The chromatin immunoprecipitation, electrophoretic mobility shift assay, and transient dual-luciferase reporter assays showed that STK positively regulates seed oil accumulation by directly repressing the expression of MYB5, SEP3, and SEED FATTY ACID REDUCER 4 (SFAR4). Moreover, genetic and molecular analyses demonstrated that STK and SEP3 antagonistically regulate seed oil production and that SEP3 weakens the binding ability of STK to MYB5, SEP3, and SFAR4. Additionally, we demonstrated that TRANSPARENT TESTA 8 (TT8) and ACYL-ACYL CARRIER PROTEIN DESATURASE 3 (AAD3) are direct targets of MYB5 during seed oil accumulation in Arabidopsis. Together, our findings provide the transcriptional regulatory network antagonistically orchestrated by STK and SEP3, which fine tunes oil accumulation in seeds.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Plant Oils/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism
4.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003239

ABSTRACT

Anthocyanins are widespread water-soluble pigments in the plant kingdom. Anthocyanin accumulation is activated by the MYB-bHLH-WD40 (MBW) protein complex. In Arabidopsis, the R2R3-MYB transcription factor PAP1 activates anthocyanin biosynthesis. While prior research primarily focused on seedlings, seeds received limited attention. This study explores PAP1's genome-wide target genes in anthocyanin biosynthesis in seeds. Our findings confirm that PAP1 is a positive regulator of anthocyanin biosynthesis in Arabidopsis seeds. PAP1 significantly increased anthocyanin content in developing and mature seeds in Arabidopsis. Transcriptome analysis at 12 days after pollination reveals the upregulation of numerous genes involved in anthocyanin accumulation in 35S:PAP1 developing seeds. Chromatin immunoprecipitation and dual luciferase reporter assays demonstrate PAP1's direct promotion of ten key genes and indirect upregulation of TT8, TTG1, and eight key genes during seed maturation, thus enhancing seed anthocyanin accumulation. These findings enhance our understanding of PAP1's novel role in regulating anthocyanin accumulation in Arabidopsis seeds.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Anthocyanins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Seeds/genetics , Seeds/metabolism , Gene Expression Regulation, Plant
5.
Plants (Basel) ; 12(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687347

ABSTRACT

Flax (Linum usitatissimum L.), as an important oil-producing crop, is widely distributed throughout the world, and its seeds are rich in polyunsaturated fatty acids (FAs). Previous studies have revealed that Arabidopsis thaliana ACETYL-CoA CARBOXYLASE (AtACCase) is vital for FA biosynthesis. However, the functions of L. usitatissimum AccD (LuAccD) on FA accumulation and seed germination remain unclear. In the present study, we cloned the LuAccD coding sequence from the flax cultivar 'Longya 10', identified conserved protein domains, and performed a phylogenetic analysis to elucidate its relationship with homologs from a range of plant species. Ectopic expression of LuAccD in A. thaliana wild-type background enhanced seed FA accumulation without altering seed morphological characteristics, including seed size, 1000-seed weight, and seed coat color. Consistently, the expression of key genes involved in FA biosynthesis was greatly up-regulated in the developing seeds of LuAccD overexpression lines. Additionally, we demonstrated that LuAccD acts as a positive regulator of salt and mannitol tolerance during seed germination in A. thaliana. These results provide important insights into the functions of LuAccD, which facilitates the oil quantity and abiotic stress tolerance of oil-producing crops through genetic manipulation.

6.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446233

ABSTRACT

The cytochrome P450 monooxygenases (CYP450) are the largest enzyme family in plant metabolism and widely involved in the biosynthesis of primary and secondary metabolites. Foxtail millet (Setaria italica (L.) P. Beauv) can respond to abiotic stress through a highly complex polygene regulatory network, in which the SiCYP450 family is also involved. Although the CYP450 superfamily has been systematically studied in a few species, the research on the CYP450 superfamily in foxtail millet has not been completed. In this study, three hundred and thirty-one SiCYP450 genes were identified in the foxtail millet genome by bioinformatics methods, which were divided into four groups, including forty-six subgroups. One hundred and sixteen genes were distributed in thirty-three tandem duplicated gene clusters. Chromosome mapping showed that SiCYP450 was distributed on seven chromosomes. In the SiCYP450 family of foxtail millet, 20 conserved motifs were identified. Cis-acting elements in the promoter region of SiCYP450 genes showed that hormone response elements were found in all SiCYP450 genes. Of the three hundred and thirty-one SiCYP450 genes, nine genes were colinear with the Arabidopsis thaliana genes. Two hundred SiCYP450 genes were colinear with the Setaria viridis genes, including two hundred and forty-five gene duplication events. The expression profiles of SiCYP450 genes in different organs and developmental stages showed that SiCYP450 was preferentially expressed in specific tissues, and many tissue-specific genes were identified, such as SiCYP75B6, SiCYP96A7, SiCYP71A55, SiCYP71A61, and SiCYP71A62 in the root, SiCYP78A1 and SiCYP94D9 in leaves, and SiCYP78A6 in the ear. The RT-PCR data showed that SiCYP450 could respond to abiotic stresses, ABA, and herbicides in foxtail millet. Among them, the expression levels of SiCYP709B4, SiCYP71A11, SiCYP71A14, SiCYP78A1, SiCYP94C3, and SiCYP94C4 were significantly increased under the treatment of mesotrione, florasulam, nicosulfuron, fluroxypyr, and sethoxydim, indicating that the same gene might respond to multiple herbicides. The results of this study will help reveal the biological functions of the SiCYP450 family in development regulation and stress response and provide a basis for molecular breeding of foxtail millet.


Subject(s)
Arabidopsis , Setaria Plant , Setaria Plant/metabolism , Plant Proteins/metabolism , Chromosome Mapping , Multigene Family , Arabidopsis/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Phylogeny
7.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36904001

ABSTRACT

Glutathione S-transferases (GSTs) are a critical superfamily of multifunctional enzymes in plants. As a ligand or binding protein, GSTs regulate plant growth and development and detoxification. Foxtail millet (Setaria italica (L.) P. Beauv) could respond to abiotic stresses through a highly complex multi-gene regulatory network in which the GST family is also involved. However, GST genes have been scarcely studied in foxtail millet. Genome-wide identification and expression characteristics analysis of the foxtail millet GST gene family were conducted by biological information technology. The results showed that 73 GST genes (SiGSTs) were identified in the foxtail millet genome and were divided into seven classes. The chromosome localization results showed uneven distribution of GSTs on the seven chromosomes. There were 30 tandem duplication gene pairs belonging to 11 clusters. Only one pair of SiGSTU1 and SiGSTU23 were identified as fragment duplication genes. A total of ten conserved motifs were identified in the GST family of foxtail millet. The gene structure of SiGSTs is relatively conservative, but the number and length of exons of each gene are still different. The cis-acting elements in the promoter region of 73 SiGST genes showed that 94.5% of SiGST genes possessed defense and stress-responsive elements. The expression profiles of 37 SiGST genes covering 21 tissues suggested that most SiGST genes were expressed in multiple organs and were highly expressed in roots and leaves. By qPCR analysis, we found that 21 SiGST genes were responsive to abiotic stresses and abscisic acid (ABA). Taken together, this study provides a theoretical basis for identifying foxtail millet GST family information and improving their responses to different stresses.

8.
Theor Appl Genet ; 136(3): 42, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36897406

ABSTRACT

KEY MESSAGE: We found that the flowering time order of accessions in a genetic population considerably varied across environments, and homolog copies of essential flowering time genes played different roles in different locations. Flowering time plays a critical role in determining the life cycle length, yield, and quality of a crop. However, the allelic polymorphism of flowering time-related genes (FTRGs) in Brassica napus, an important oil crop, remains unclear. Here, we provide high-resolution graphics of FTRGs in B. napus on a pangenome-wide scale based on single nucleotide polymorphism (SNP) and structural variation (SV) analyses. A total of 1337 FTRGs in B. napus were identified by aligning their coding sequences with Arabidopsis orthologs. Overall, 46.07% of FTRGs were core genes and 53.93% were variable genes. Moreover, 1.94%, 0.74%, and 4.49% FTRGs had significant presence-frequency differences (PFDs) between the spring and semi-winter, spring and winter, and winter and semi-winter ecotypes, respectively. SNPs and SVs across 1626 accessions of 39 FTRGs underlying numerous published qualitative trait loci were analyzed. Additionally, to identify FTRGs specific to an eco-condition, genome-wide association studies (GWASs) based on SNP, presence/absence variation (PAV), and SV were performed after growing and observing the flowering time order (FTO) of plants in a collection of 292 accessions at three locations in two successive years. It was discovered that the FTO of plants in a genetic population changed a lot across various environments, and homolog copies of some key FTRGs played different roles in different locations. This study revealed the molecular basis of the genotype-by-environment (G × E) effect on flowering and recommended a pool of candidate genes specific to locations for breeding selection.


Subject(s)
Arabidopsis , Brassica napus , Brassica napus/genetics , Quantitative Trait Loci , Genome-Wide Association Study , Plant Breeding , Genotype , Arabidopsis/genetics
9.
Plants (Basel) ; 12(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679059

ABSTRACT

Leaf senescence is the final stage of leaf development and is essential for storage properties and crop productivity. WRKY transcription factors have been revealed to play crucial roles in several biological processes during plant growth and development, especially in leaf senescence. However, the functions of Brassica napus WRKY transcription factors in leaf senescence remain unclear. In the present study, Bna.A07.WRKY70, one paralogue of Brassica napus WRKY70, was cloned from the B. napus cultivar "Zhongshuang11 (ZS11)". We found that Bna.A07.WRKY70 contains a highly conserved WRKY domain and is most closely related to Arabidopsis thaliana WRKY70. The subcellular localization and transcriptional self-activation assays indicated that Bna.A07.WRKY70 functions as a transcription factor. Meanwhile, RT-qPCR and promoter-GUS analysis showed that Bna.A07.WRKY70 is predominantly expressed in the leaves of B. napus and rosette leaves of A. thaliana. In addition, our results demonstrated that ectopic expression of Bna.A07.WRKY70 in A. thaliana wrky70 mutants could restore the senescence phenotypes to wild-type levels. Consistently, the expression levels of three senescence-related marker genes of wrky70 mutants were restored to wild-type levels by ectopic expression of Bna.A07.WRKY70. These findings improve our understanding of the function of Bna.A07.WRKY70 in B. napus and provide a novel strategy for breeding the new stay-green cultivars in rapeseed through genetic manipulation.

10.
Plant Physiol ; 192(1): 488-503, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36542529

ABSTRACT

Leaf senescence is the final stage of leaf development and is affected by various exogenous and endogenous factors. Transcriptional regulation is essential for leaf senescence, however, the underlying molecular mechanisms remain largely unclear. In this study, we report that the transcription factor MYB59, which was predominantly expressed in early senescent rosette leaves, negatively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). RNA sequencing revealed a large number of differentially expressed genes involved in several senescence-related biological processes in myb59-1 rosette leaves. Chromatin immunoprecipitation and transient dual-luciferase reporter assays demonstrated that MYB59 directly repressed the expression of SENESCENCE ASSOCIATED GENE 18 and indirectly inhibited the expression of several other senescence-associated genes to delay leaf senescence. Moreover, MYB59 was induced by salicylic acid (SA) and jasmonic acid (JA). MYB59 inhibited SA production by directly repressing the expression of ISOCHORISMATE SYNTHASE 1 and PHENYLALANINE AMMONIA-LYASE 2 and restrained JA biosynthesis by directly suppressing the expression of LIPOXYGENASE 2, thus forming two negative feedback regulatory loops with SA and JA and ultimately delaying leaf senescence. These results help us understand the novel function of MYB59 and provide insights into the regulatory network controlling leaf senescence in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Senescence , Salicylic Acid/metabolism , Plant Leaves/metabolism , Gene Expression Regulation, Plant
11.
J Plant Physiol ; 280: 153893, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502559

ABSTRACT

Flax (Linum usitatissimum) is an important oil crop in arid and semi-arid regions of North and Northwest China, and its seeds are rich in nutritious storage reserves, such as polyunsaturated fatty acids (FAs) and proteins. However, the regulatory networks that control the accumulation of seed storage reserves in flax are still largely unknown. In this study, we found that LuABI3-1 and LuABI3-2 homologs from the flax cultivar 'Longya 10' play important roles in regulating the accumulation of seed storage reserves in Arabidopsis thaliana. The results of subcellular localization and transcriptional activity assays showed that both LuABI3-1 and LuABI3-2 function as transcription factors. Overexpression of either LuABI3-1 or LuABI3-2 resulted in the significant increase in the contents of total seed FAs and storage proteins, but did not alter other key agronomic traits in A. thaliana. Accordingly, the expression of key genes involved in the biosynthesis of FAs and storage proteins was also greatly up-regulated in the developing seeds of LuABI3-1-overexpression lines. Additionally, both LuABI3-1 and LuABI3-2 enhanced the tolerance to the high salt and mannitol stresses during seed germination and seedling establishment in A. thaliana. These results increase our understanding of the LuABI3 regulatory functions and provide promising targets for genetic manipulation of L. usitatissimum to innovate the germplasm resources and cultivate high yield and quality varieties.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flax , Arabidopsis/genetics , Arabidopsis/metabolism , Seedlings/genetics , Seedlings/metabolism , Flax/genetics , Flax/metabolism , Germination/genetics , Seeds/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555573

ABSTRACT

Rapeseed (Brassica napus L.) is an important oil crop and a major source of tocopherols, also known as vitamin E, in human nutrition. Enhancing the quality and composition of fatty acids (FAs) and tocopherols in seeds has long been a target for rapeseed breeding. The gene γ-Tocopherol methyltransferase (γ-TMT) encodes an enzyme catalysing the conversion of γ-tocopherol to α-tocopherol, which has the highest biological activity. However, the genetic basis of γ-TMT in B. napus seeds remains unclear. In the present study, BnaC02.TMT.a, one paralogue of Brassica napus γ-TMT, was isolated from the B. napus cultivar "Zhongshuang11" by nested PCR, and two homozygous transgenic overexpression lines were further characterised. Our results demonstrated that the overexpression of BnaC02.TMT.a mediated an increase in the α- and total tocopherol content in transgenic B. napus seeds. Interestingly, the FA composition was also altered in the transgenic plants; a reduction in the levels of oleic acid and an increase in the levels of linoleic acid and linolenic acid were observed. Consistently, BnaC02.TMT.a promoted the expression of BnFAD2 and BnFAD3, which are involved in the biosynthesis of polyunsaturated fatty acids during seed development. In addition, BnaC02.TMT.a enhanced the tolerance to salt stress by scavenging reactive oxygen species (ROS) during seed germination in B. napus. Our results suggest that BnaC02.TMT.a could affect the tocopherol content and FA composition and play a positive role in regulating the rapeseed response to salt stress by modulating the ROS scavenging system. This study broadens our understanding of the function of the Bnγ-TMT gene and provides a novel strategy for genetic engineering in rapeseed breeding.


Subject(s)
Brassica napus , Brassica rapa , alpha-Tocopherol/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Brassica rapa/genetics , Fatty Acids/metabolism , Germination , Plant Breeding , Reactive Oxygen Species/metabolism , Salt Stress , Seeds/metabolism , Tocopherols/metabolism , Vitamin E/metabolism
13.
Planta ; 256(4): 65, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36036331

ABSTRACT

MAIN CONCLUSION: TaATLa1 was identified to respond to nitrogen deprivation through transcriptome analysis of wheat seedlings. TaATLa1 specifically transports Gln, Glu, and Asp, and affects the biomass of Arabidopsis and wheat. Nitrogen is an essential macronutrient and plays a crucial role in wheat production. Amino acids, the major form of organic nitrogen, are remobilized by amino acid transporters (AATs) in plants. AATs are commonly described as central components of essential developmental processes and yield formation via taking up and transporting amino acids in plants. However, few studies have reported the detailed biochemical properties and biological functions of these AATs in wheat. In this study, key genes encoding AATs were screened from transcriptome analysis of wheat seedlings treated with normal nitrogen (NN) and nitrogen deprivation (ND). Among them, 21 AATs were down-regulated and eight AATs were up-regulated under ND treatment. Among the homoeologs, TaATLa1.1-3A, TaATLa1.1-3B, and TaATLa1.1-3D (TaATLa1.1-3A, -3B, and -3D), belonging to amino acid transporter-like a (ATLa) subfamily, were significantly down-regulated in response to ND in wheat, and accordingly were selected for functional analyses. The results demonstrated that TaATLa1.1-3A, -3B, and -3D effectively transported glutamine (Gln), glutamate (Glu), and aspartate (Asp) in yeast. Overexpression of TaAILa1.1-3A, -3B, and -3D in Arabidopsis thaliana L. significantly increased amino acid content in leaves, storage protein content in seeds and the plant biomass under NN. Knockdown of TaATLa1.1-3A, -3B, and -3D in wheat seedlings resulted in a significant block of amino acid remobilization and growth inhibition. Taken together, TaATLa1.1-3A, -3B, and -3D contribute substantially to Arabidopsis and wheat growth. We propose that TaATLa1.1-3A, -3B, and -3D may participate in the source-sink translocation of amino acid, and they may have profound implications for wheat yield improvement.


Subject(s)
Arabidopsis , Triticum , Amino Acid Transport Systems , Amino Acids , Gene Expression Regulation, Plant , Nitrogen , Plant Proteins , Seedlings
14.
Int J Mol Sci ; 23(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35742892

ABSTRACT

Broomcorn millet (Panicum miliaceum L.) is a water-efficient and highly salt-tolerant plant. In this study, the salt tolerance of 17 local species of broomcorn millet was evaluated through testing based on the analysis of the whitening time and the germination rate of their seeds. Transcriptome sequencing revealed that PmbZIP131, PmbZIP125, PmbZIP33, PmABI5, PmbZIP118, and PmbZIP97 are involved in seed germination under salt stress. Seedling stage expression analysis indicates that PmABI5 expression was induced by treatments of high salt (200 mM NaCl), drought (20% W/V PEG6000), and low temperature (4 °C) in seedlings of the salt-tolerant variety Y9. The overexpression of PmABI5 significantly increases the germination rate and root traits of Arabidopsis thaliana transgenic lines, with root growth and grain traits significantly enhanced compared to the wild type (Nipponbare). BiFC showed that PmABI5 undergoes homologous dimerization in addition to forming a heterodimer with either PmbZIP33 or PmbZIP131. Further yeast one-hybrid experiments showed that PmABI5 and PmbZIP131 regulate the expression of PmNAC1 by binding to the G-box in the promoter. These results indicate that PmABI5 can directly regulate seed germination and seedling growth and indirectly improve the salt tolerance of plants by regulating the expression of the PmNAC1 gene through the formation of heterodimers with PmbZIP131.


Subject(s)
Arabidopsis , Panicum , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Panicum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Seedlings/metabolism , Seeds/metabolism , Stress, Physiological/genetics
15.
ACS Appl Mater Interfaces ; 14(21): 24946-24954, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35593079

ABSTRACT

Keypads constructed from fabric materials are the ideal input devices for smart clothing applications. However, multi-modal reaction problems have to be addressed before they can be of practical use on apparels, i.e., the fabric-based keypads need to distinguish between the legitimate actions by the fingertips and the illegitimate deformations and stresses caused by human movements. In this paper, we propose to use the humidity sensor functionalized from graphene oxide (GO)-coated polyester fibers to construct the e-textile keypads. As the moisture level in the proximity of human fingertips is much higher (over 70%) than other parts of the human body, humidity sensing has many advantages over other tactility mechanisms. Experiments have demonstrated that the GO-functionalized fabric keypad has a stable uni-modal tactility only to fingertip touches, and it is not sensitive to deformation, pressure, temperature variation, and other ambient interferences. With biasing and sensing circuits, the keypad exhibits a quick response and recovery time (around 0.1 s), comparable to mechanical keyboards. To demonstrate its application on smart clothing, the keypad was sewn on a sweater and embroidered conductive yarns were used to control an MP3 player in the pocket.

16.
J Agric Food Chem ; 70(11): 3420-3434, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35261232

ABSTRACT

Previous studies have reported that SEEDSTICK/AGAMOUS-LIKE 11 (AtSTK/AtAGL11), a MADS-box transcription factor, plays important roles in many biological processes in Arabidopsis thaliana. However, the function of BnaAGL11, an AtAGL11 homologous gene from Brassica napus, in leaf development remains unknown. Here, we found that the ectopic expression of any copy of Bna.C09.AGL11, Bna.A03.AGL11, and Bna.A09.AGL11 in A. thaliana led to smaller and curly leaves and promoted leaf senescence. Consistently, the overexpression of Bna.C09.AGL11 in B. napus also caused smaller and curly leaves and accelerated leaf senescence. Furthermore, we demonstrated that Bna.C09.AGL11 controlled leaf morphogenesis by indirectly downregulating the genes of Bna.A01.DWF4 and Bna.C07.PGX3 and promoted leaf senescence by indirectly upregulating the genes of Bna.A04.ABI5, Bna.A05.ABI5, Bna.C04.ABI5-1, and Bna.C01.SEN4 and directly activating the transcription of Bna.C04.ABI5-2 and Bna.C03.SEN4 genes. Our results provide new insights into the underlying regulatory mechanism of BnaAGL11 during leaf development in B. napus.


Subject(s)
Arabidopsis , Brassica napus , Arabidopsis/genetics , Brassica napus/genetics , Brassica napus/metabolism , Gene Expression Regulation, Plant , Morphogenesis , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Plant Sci ; 311: 111014, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482917

ABSTRACT

Flax (Linum usitatissimum) seed oil is rich in polyunsaturated fatty acids (PUFAs), particularly linolenic acid, which is converted from linoleic acid. Studies have indicated that the biosynthesis of linoleic acid and linolenic acid is controlled by FAD2 and FAD3, respectively. However, the functional distinctions of different LuFAD2 and LuFAD3 copies from L. usitatissimum in governing the biosynthesis of linoleic acid or linolenic acid, respectively, remain unclear. In this study, five LuFAD2 and three LuFAD3 cDNAs were cloned from the L. usitatissimum cultivar 'Longya 10', and GC-MS results demonstrated that LuFAD2A and LuFAD3A play predominant roles in the accumulation of linoleic acid and linolenic acid, respectively. Their simultaneous overexpression in Arabidopsis thaliana seeds led to a significant increase in fatty acid contents, especially PUFAs. Additionally, LuFAD2A and LuFAD3A promoted the biosynthesis of jasmonic acid by increasing the levels of linolenic acid, which, in turn, enhanced plant cold tolerance. When the amount of linolenic acid is not sufficient, plants adapt to low temperature via the accumulation of anthocyanins. These findings provide insights into the higher accumulation of PUFAs in L. usitatissimum seeds, and provide potential targets for improving oil quality of other oil-producing crops through molecular manipulation.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/genetics , Cold Temperature , Fatty Acids/biosynthesis , Flax/genetics , Seedlings/metabolism , Seeds/metabolism , Arabidopsis/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Fatty Acids/genetics , Flax/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Plants, Genetically Modified/metabolism , Sequence Analysis, Protein
19.
Aging (Albany NY) ; 13(16): 20585-20597, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34435973

ABSTRACT

The prognostic value of the systemic immune-inflammation index (SII) in patients with pancreatic cancer is conflicting according to previous investigations. Therefore, we performed a meta-analysis to explore the association between SII and pancreatic cancer prognosis. Electronic databases were searched for studies exploring the association of SII with prognostic outcomes in pancreatic cancer. The endpoints were overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progression-free survival (PFS), cancer-specific survival (CSS), and clinicopathological parameters. The prognostic value of SII was estimated by hazard ratio (HR) or odds ratio (OR) with a 95% confidence interval (CI). Nine studies containing 11 cohorts with 2,365 subjects in total were included in this meta-analysis. Elevated SII was associated with poor OS (HR=1.50, 95% CI=1.15-1.96, p=0.002), RFS/PFS/DFS (HR=1.52, 95% CI=1.01-2.28, p=0.045), and CSS (HR=2.60, 95% CI=1.65-4.09, p < 0.001) in patients with pancreatic cancer. Additionally, there was no significant association between SII and other parameters in pancreatic cancer such as sex, tumor location, lymph node metastasis, tumor-node-metastasis stage, vascular invasion, and grade. This meta-analysis suggested that elevated SII was a significant prognostic marker for short-term and long-term survival outcomes in patients with pancreatic cancer.


Subject(s)
Pancreatic Neoplasms/immunology , Female , Humans , Male , Neoplasm Metastasis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Survival , Pancreatic Neoplasms
20.
Carbohydr Polym ; 257: 117623, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33541650

ABSTRACT

Our study on six wheat genotypes has revealed strong interaction between gluten and starch to affect dough stability. To establish gluten-starch interaction and its roles in dough stability, we randomly selected 16 wheat genotypes and investigated the physicochemical properties of gluten and starch. The manner in which the starch granules occupied available space in gluten network was quantitatively analyzed using gluten lacunarity and proportion of different sized A-type and B-type starch granules. Positive correlations were found between the morphological attributes (B/A/Lacunarity, B/Lacunarity) and dough stability. The correlation coefficient between B/A/Lacunarity and dough stability was highest, followed by the percentage of unextractable polymeric protein (UPP%), B/Lacunarity and dough stability. Dough mixing properties were strongly affected by gluten-starch interactions, as indicated by novel parameters. Whereas the effect of gluten on its own did not provide any evidence to suggest its concrete role in dough mixing properties because of the various genetic backgrounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...