Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Ecotoxicol Environ Saf ; 278: 116431, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718730

ABSTRACT

The issue of mercury (Hg) toxicity has recently been identified as a significant environmental concern, with the potential to impede plant growth in forested and agricultural areas. Conversely, recent reports have indicated that Fe, may play a role in alleviating HM toxicity in plants. Therefore, this study's objective is to examine the potential of iron nanoparticles (Fe NPs) and various sources of Fe, particularly iron sulfate (Fe SO4 or Fe S) and iron-ethylene diamine tetra acetic acid (Fe - EDTA or Fe C), either individually or in combination, to mitigate the toxic effects of Hg on Pleioblastus pygmaeus. Involved mechanisms in the reduction of Hg toxicity in one-year bamboo species by Fe NPs, and by various Fe sources were introduced by a controlled greenhouse experiment. While 80 mg/L Hg significantly reduced plant growth and biomass (shoot dry weight (36%), root dry weight (31%), and shoot length (31%) and plant tolerance (34%) in comparison with control treatments, 60 mg/L Fe NPs and conventional sources of Fe increased proline accumulation (32%), antioxidant metabolism (21%), polyamines (114%), photosynthetic pigments (59%), as well as root dry weight (25%), and shoot dry weight (22%), and shoot length (22%). Fe NPs, Fe S, and Fe C in plant systems substantially enhanced tolerance to Hg toxicity (23%). This improvement was attributed to increased leaf-relative water content (39%), enhanced nutrient availability (50%), improved antioxidant capacity (34%), and reduced Hg translocation (6%) and accumulation (31%) in plant organs. Applying Fe NPs alone or in conjunction with a mixture of Fe C and Fe S can most efficiently improve bamboo plants' tolerance to Hg toxicity. The highest efficiency in increasing biochemical and physiological indexes under Hg, was related to the treatments of Fe NPs as well as Fe NPs + FeS + FeC. Thus, Fe NPs and other Fe sources might be effective options to remove toxicity from plants and soil. The future perspective may help establish mechanisms to regulate environmental toxicity and human health progressions.


Subject(s)
Iron , Mercury , Metal Nanoparticles , Soil Pollutants , Soil , Mercury/toxicity , Soil Pollutants/toxicity , Metal Nanoparticles/toxicity , Soil/chemistry , Edetic Acid/chemistry , Poaceae/drug effects , Poaceae/growth & development , Environmental Restoration and Remediation/methods , Nutrients , Antioxidants/metabolism
2.
J Nanobiotechnology ; 22(1): 91, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443975

ABSTRACT

The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.


Subject(s)
Arsenic , Crop Production , Humans , Agriculture , Agrochemicals/toxicity , Aluminum
3.
Cancer Cell Int ; 24(1): 22, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200525

ABSTRACT

According to statistics, the incidence of liver cancer is increasing yearly, and effective treatment of liver cancer is imminent. For early liver cancer, resection surgery is currently the most effective treatment. However, resection does not treat the disease in advanced patients, so finding a method with a better prognosis is necessary. In recent years, ferroptosis and cuproptosis have been gradually defined, and related studies have proved that they show excellent results in the therapy of liver cancer. Cuproptosis is a new form of cell death, and the use of cuproptosis combined with ferroptosis to inhibit the production of hepatocellular carcinoma cells has good development prospects and is worthy of in-depth discussion by researchers. In this review, we summarize the research progress on cuproptosis combined with ferroptosis in treating liver cancer, analyze the value of cuproptosis and ferroptosis in the immune of liver cancer, and propose potential pathways in oncotherapy with the combination of cuproptosis and ferroptosis, which can provide background knowledge for subsequent related research.

4.
Int J Biol Macromol ; 254(Pt 2): 127830, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926315

ABSTRACT

The sweet potato whitefly, Bemisia tabaci, is an important insect pest that transmits over 200 different plant viruses and causes serious damage to the production of cotton and Solanaceae vegetables. Cyantraniliprole is the first diamide insecticide, showing toxicity against B. tabaci. However, B. tabaci has developed resistance to this insecticide by upregulating the expressions of cytochrome P450 genes such as CYP6CX3, while there is limited information on the regulatory mechanism mediated by miRNA. In the present study, ten miRNAs were predicted to target CYP6CX3, in which miR-276-3p showed an inverse expression pattern with CYP6CX3 in two cyantraniliprole resistant strains and under cyantraniliprole exposure. A luciferase assay demonstrated that miR-276-3p suppressed CYP6CX3 expression by pairing with residues 1445-1453. Overexpression or knockdown of miR-276-3p directly impacted B. tabaci resistance to cyantraniliprole. In addition, exposure to cyantraniliprole led to a significant reduction in the expressions of five genes (drosha, dicer1, dicer2, Ago1, and Ago2A) associated with miRNA biogenesis. Suppressing genes such as drosha, dicer1, and Ago2A reduced the expression of miR-276-3p, increased CYP6CX3 expression, and decreased B. tabaci resistance to cyantraniliprole. These results improve our understanding of the role of miRNAs in P450 regulation and cyantraniliprole resistance in B. tabaci.


Subject(s)
Hemiptera , Insecticides , MicroRNAs , Animals , Insecticides/pharmacology , Insecticides/metabolism , Pyrazoles/metabolism , Hemiptera/metabolism , Cytochrome P-450 Enzyme System/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
5.
Plant Physiol ; 194(4): 2249-2262, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38109500

ABSTRACT

Desiccation is typically fatal, but a small number of land plants have evolved vegetative desiccation tolerance (VDT), allowing them to dry without dying through a process called anhydrobiosis. Advances in sequencing technologies have enabled the investigation of genomes for desiccation-tolerant plants over the past decade. However, a dedicated and integrated database for these valuable genomic resources has been lacking. Our prolonged interest in VDT plant genomes motivated us to create the "Drying without Dying" database, which contains a total of 16 VDT-related plant genomes (including 10 mosses) and incorporates 10 genomes that are closely related to VDT plants. The database features bioinformatic tools, such as blast and homologous cluster search, sequence retrieval, Gene Ontology term and metabolic pathway enrichment statistics, expression profiling, co-expression network extraction, and JBrowser exploration for each genome. To demonstrate its utility, we conducted tailored PFAM family statistical analyses, and we discovered that the drought-responsive ABA transporter AWPM-19 family is significantly tandemly duplicated in all bryophytes but rarely so in tracheophytes. Transcriptomic investigations also revealed that response patterns following desiccation diverged between bryophytes and angiosperms. Combined, the analyses provided genomic and transcriptomic evidence supporting a possible divergence and lineage-specific evolution of VDT in plants. The database can be accessed at http://desiccation.novogene.com. We expect this initial release of the "Drying without Dying" plant genome database will facilitate future discovery of VDT genetic resources.


Subject(s)
Bryophyta , Desiccation , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism , Genome, Plant/genetics , Transcriptome/genetics , Bryophyta/genetics
6.
Int J Mol Sci ; 24(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38069395

ABSTRACT

Zn2+-dependent histone deacetylases (HDACs) are enzymes that regulate gene expression by removing acetyl groups from histone proteins. These enzymes are essential in all living systems, playing key roles in cancer treatment and as potential pesticide targets. Previous phylogenetic analyses of HDAC in certain species have been published. However, their classification and evolutionary origins across biological kingdoms remain unclear, which limits our understanding of them. In this study, we collected the HDAC sequences from 1451 organisms and performed analyses. The HDACs are found to diverge into three classes and seven subclasses under divergent selection pressure. Most subclasses show species specificity, indicating that HDACs have evolved with high plasticity and diversification to adapt to different environmental conditions in different species. In contrast, HDAC1 and HDAC3, belonging to the oldest class, are conserved and crucial in major kingdoms of life, especially HDAC1. These findings lay the groundwork for the future application of HDACs.


Subject(s)
Histones , Zinc , Phylogeny , Zinc/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism
7.
J Agric Food Chem ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37916838

ABSTRACT

Disease represents a major problem in sustainable agricultural development. Plants interact closely with various microorganisms during their development and in response to the prevailing environment. In particular, pathogenic microorganisms can cause plant diseases, affecting the fertility, yield, and longevity of plants. During the long coevolution of plants and their pathogens, plants have evolved both molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) signaling networks in order to regulate host cells in response to pathogen infestation. Additionally, in the postgenomic era, alternative splicing (AS) has become uncovered as one of the major drivers of proteome diversity, and abnormal RNA splicing is closely associated with bacterial infections. Currently, the complexity of host-bacteria interactions is a much studied area of research that has shown steady progress over the past decade. Although the development of high-throughput sequencing technologies and their application in transcriptomes have revolutionized our understanding of AS, many mechanisms related to host-bacteria interactions remain still unclear. To this end, this review summarizes the changes observed in AS during host-bacteria interactions and outlines potential therapeutics for bacterial diseases based on existing studies. In doing so, we hope to provide guidelines for plant disease management in agriculture.

8.
Environ Sci Pollut Res Int ; 30(56): 119187-119203, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37919503

ABSTRACT

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) holds a pivotal role within the glycolytic pathway of higher plants. It has garnered attention as a significant target protein in instances of oxidative stress, where it can engage in thiolation reactions within its active site. Numerous genes encoding cytosolic iterations of GAPDH have been identified and analyzed in specific plant species. This investigation was conducted to gain insights into GAPDH's function amidst drought-induced stress. Within this framework, the basil plant (Ocimum basilicum) was chosen for focused exploration, encompassing the cloning of the comprehensive cDNA of basil GAPDH (ObGAPDH) and scrutinizing its patterns of expression. The complete sequence of Ob-GAPDH spanned 1315 base pairs. The resultant protein derived from this sequence comprised 399 amino acids, projecting a molecular weight of approximately 42.54 kDa and an isoelectric point (pI) of 6.01. An examination of the evolutionary connections among various GAPDH proteins unveiled ObGAPDH's shared lineage with GAPDH proteins sourced from other plants, such as Salvia splendens and Sesamum indicum. Furthermore, computational methodologies were harnessed to predict the potential oxidative role of ObGAPDH in response to external signals. Molecular docking simulations illuminated the interaction between ObGAPDH and hydrogen peroxide (H2O2) as a ligand. Scrutinizing the expression patterns of the ObGAPDH gene under conditions of water scarcity stress brought to light diverse levels of transcriptional activity. Collectively, these findings underscore the notion that the regulation of ObGAPDH expression is contingent upon both the specific plant cultivar and the presence of stress stemming from drought conditions.


Subject(s)
Ocimum basilicum , Ocimum basilicum/genetics , Ocimum basilicum/metabolism , Droughts , Hydrogen Peroxide/metabolism , Molecular Docking Simulation , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Gene Expression
9.
Plant J ; 116(4): 1030-1040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37856620

ABSTRACT

Fruit traits are critical determinants of plant fitness, resource diversity, productive and quality. Gene regulatory networks in plants play an essential role in determining fruit traits, such as fruit size, yield, firmness, aroma and other important features. Many research studies have focused on elucidating the associated signaling pathways and gene interaction mechanism to better utilize gene resources for regulating fruit traits. However, the availability of specific database of genes related to fruit traits for use by the plant research community remains limited. To address this limitation, we developed the Gene Improvements for Fruit Trait Database (GIFTdb, http://giftdb.agroda.cn). GIFTdb contains 35 365 genes, including 896 derived from the FR database 1.0, 305 derived from 30 882 articles from 2014 to 2021, 236 derived from the Universal Protein Resource (UniProt) database, and 33 928 identified through homology analysis. The database supports several aided analysis tools, including signal transduction pathways, gene ontology terms, protein-protein interactions, DNAWorks, Basic Local Alignment Search Tool (BLAST), and Protein Subcellular Localization Prediction (WoLF PSORT). To provide information about genes currently unsupported in GIFTdb, potential fruit trait-related genes can be searched based on homology with the supported genes. GIFTdb can provide valuable assistance in determining the function of fruit trait-related genes, such as MYB306-like, by conducting a straightforward search. We believe that GIFTdb will be a valuable resource for researchers working on gene function annotation and molecular breeding to improve fruit traits.


Subject(s)
Fruit , Genes, Plant , Fruit/metabolism , Phenotype , Plants/genetics , Molecular Sequence Annotation
10.
Front Cell Infect Microbiol ; 13: 1202007, 2023.
Article in English | MEDLINE | ID: mdl-37533931

ABSTRACT

Objective: Split-dose polyethylene glycol (PEG) is routinely used for bowel preparation before colonoscopy. This study aimed to investigate the composition of gut microbiota and its functions in pediatric patients undergoing split-dose PEG bowel preparation for colonoscopy to understand the stability and resilience of gut microbiota. Material and methods: From September to December 2021, 19 pediatric patients were enrolled at Shenzhen Children's Hospital and 76 samples (4 time points) were analyzed using metagenomics. Time points included Time_1 (one day before bowel preparation), Time_2 (one day after colonoscopy), Time_3 (two weeks after bowel preparation), and Time_4 (four weeks after bowel preparation). Result: Alpha diversity comparison at both the species and gene levels showed a decrease in community richness after colonoscopy, with little statistical significance. However, the Shannon diversity index significantly decreased (P<0.05) and gradually returned to pre-preparation levels at two weeks after bowel preparation. The genus level analysis showed six genera (Eubacterium, Escherichia, Intertinibacter, Veillonella, Ruminococcaceae unclassified, and Coprobacillus) significantly different across the four time periods. Additionally, at the species level, the abundance of Escherichia coli, Bacteroides fragilis, and Veillonella parvula significantly increased at one day after colonoscopy before gradually decreasing at two weeks after bowel preparation. In contrast, the abundance of Intertinibacter bartlettii decreased at one day after colonoscopy but then recovered at two weeks after bowel preparation, reaching the preoperative level at four weeks after bowel preparation. Furthermore, five functional pathways (base excision repair, biosynthesis of ansamycins, biosynthesis of siderophore group nonribosomal peptide, flavonoid biosynthesis, and biosynthesis of type II polyketide products) were significantly different across the four time periods, with recovery at two weeks after bowel preparation and reaching preoperative levels at four weeks after bowel preparation. Conclusions: Gut microbiota at the genus level, species level, and functional pathways are impacted in pediatric patients undergoing split-dose PEG bowel preparation and colonoscopy, with recovery two weeks following bowel preparation. However, the phylum level was not impacted. Modifications in gut microbiota composition and function may be investigated in future studies of bowel preparation. This study highlights the stability and resilience of gut microbiota among pediatric patients during bowel preparation.


Subject(s)
Cathartics , Gastrointestinal Microbiome , Humans , Child , Cathartics/adverse effects , Metagenomics , Polyethylene Glycols , Colonoscopy/adverse effects
12.
J Hazard Mater ; 458: 131991, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37459756

ABSTRACT

Hormesis is important in plant performance in contaminated environments, but the underlying genetic mechanisms are poorly understood. This study aimed at mining key genes in regulating Cd-induced hormesis in Arabidopsis thaliana and verifying their biological function. Hormesis of fresh weight, dry weight, and root length occurred at concentrations of 0.003-2.4, 0.03-0.6, and 0.03-0.6 µM Cd, respectively. Superoxide dismutase and catalase activities, and chlorophyll content displayed inverted U-shaped curves, indicating that the antioxidant defense system and photosynthesis system played roles in hormesis. Based on KEGG pathway analysis with the trend chart of differentially expressed genes and weighted correlation network analysis, the key gene ABF1 in the metabolic pathway of abscisic acid was identified. Subsequently, genetic experiments with wild, overexpressing, and knockdown lines of A. thaliana were conducted to further verify the biological function of ABF1 involving Cd-induced hormesis in A. thaliana. The results revealed that the resistance capability of the overexpressing type to Cd stress was significantly enhanced and implicated that the ABF1 gene is essential for Cd-induced hormesis in A. thaliana. Mining key genes that regulate Cd-induced hormesis in plants and stimulate them could have a transformative impact on the phytoremediation of metal-contaminated environments.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Hormesis , Cadmium/metabolism , Antioxidants/metabolism , Abscisic Acid
13.
Int J Mol Sci ; 24(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446297

ABSTRACT

Raffinose synthase (Rafs) is an important enzyme in the synthesis pathway of raffinose from sucrose and galactinol in higher plants and is involved in the regulation of seed development and plant responses to abiotic stresses. In this study, we analyzed the Rafs families and profiled their alternative splicing patterns at the genome-wide scale from 10 grass species representing crops and grasses. A total of 73 Rafs genes were identified from grass species such as rice, maize, foxtail millet, and switchgrass. These Rafs genes were assigned to six groups based the phylogenetic analysis. We compared the gene structures, protein domains, and expression patterns of Rafs genes, and also unraveled the alternative transcripts of them. In addition, different conserved sequences were observed at these putative splice sites among grass species. The subcellular localization of PvRafs5 suggested that the Rafs gene was expressed in the cytoplasm or cell membrane. Our findings provide comprehensive knowledge of the Rafs families in terms of genes and proteins, which will facilitate further functional characterization in grass species in response to abiotic stress.


Subject(s)
Alternative Splicing , Setaria Plant , Humans , Phylogeny , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Stress, Physiological/genetics , Setaria Plant/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Pest Manag Sci ; 79(10): 3397-3407, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37291065

ABSTRACT

Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.


Subject(s)
Hemiptera , Oryza , Reoviridae , Animals , Insect Vectors , Reoviridae/genetics , Reoviridae/metabolism , Hemiptera/physiology , Plant Diseases
15.
Trends Biotechnol ; 41(12): 1532-1548, 2023 12.
Article in English | MEDLINE | ID: mdl-37365082

ABSTRACT

Proteogenomics (PG) integrates the proteome with the genome and transcriptome to refine gene models and annotation. Coupled with single-cell (SC) assays, PG effectively distinguishes heterogeneity among cell groups. Affiliating spatial information to PG reveals the high-resolution circuitry within SC atlases. Additionally, PG can investigate dynamic changes in protein-coding genes in plants across growth and development as well as stress and external stimulation, significantly contributing to the functional genome. Here we summarize existing PG research in plants and introduce the technical features of various methods. Combining PG with other omics, such as metabolomics and peptidomics, can offer even deeper insights into gene functions. We argue that the application of PG will represent an important font of foundational knowledge for plants.


Subject(s)
Proteogenomics , Genome , Proteome/genetics , Transcriptome
16.
Front Immunol ; 14: 1095267, 2023.
Article in English | MEDLINE | ID: mdl-37153612

ABSTRACT

Inflammatory bowel disease (IBD) mainly includes Crohn's disease and ulcerative colitis. These diseases have a progressive course of chronic relapse and remission and affect a large number of children and adults worldwide. The burden of IBD is rising worldwide, with levels and trends varying greatly in countries and regions. Like most chronic diseases, the costs associated with IBD are high, including hospitalizations, outpatient and emergency visits, surgeries, and pharmacotherapies. However, there is no radical cure for it yet, and its therapeutic targets still need further study. Currently, the pathogenesis of IBD remains unclear. It is generally assumed that the occurrence and development of IBD are related to the environmental factors, gut microbiota, immune imbalance, and genetic susceptibility. Alternative splicing contributes to a various diseases, such as spinal muscular atrophy, liver diseases, and cancers. In the past, it has been reported that alternative splicing events, splicing factors, and splicing mutations were associated with IBD, but there were no reports on the practical application for clinical diagnosis and treatment of IBD using splicing-related methods. Therefore, this article reviews research progress on alternative splicing events, splicing factors, and splicing mutations associated with IBD.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Adult , Child , Humans , Alternative Splicing , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Crohn Disease/drug therapy , Colitis, Ulcerative/drug therapy
17.
Planta ; 257(6): 109, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37145304

ABSTRACT

MAIN CONCLUSION: Serine/arginine-rich (SR) proteins participate in RNA processing by interacting with precursor mRNAs or other splicing factors to maintain plant growth and stress responses. Alternative splicing is an important mechanism involved in mRNA processing and regulation of gene expression at the posttranscriptional level, which is the main reason for the diversity of genes and proteins. The process of alternative splicing requires the participation of many specific splicing factors. The SR protein family is a splicing factor in eukaryotes. The vast majority of SR proteins' existence is an essential survival factor. Through its RS domain and other unique domains, SR proteins can interact with specific sequences of precursor mRNA or other splicing factors and cooperate to complete the correct selection of splicing sites or promote the formation of spliceosomes. They play essential roles in the composition and alternative splicing of precursor mRNAs, providing pivotal functions to maintain growth and stress responses in animals and plants. Although SR proteins have been identified in plants for three decades, their evolutionary trajectory, molecular function, and regulatory network remain largely unknown compared to their animal counterparts. This article reviews the current understanding of this gene family in eukaryotes and proposes potential key research priorities for future functional studies.


Subject(s)
RNA-Binding Proteins , Serine , Animals , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Serine/genetics , Serine/metabolism , Nuclear Proteins/genetics , RNA Splicing/genetics , Alternative Splicing/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Splicing Factors/metabolism , Arginine
18.
Wiley Interdiscip Rev RNA ; 14(5): e1793, 2023.
Article in English | MEDLINE | ID: mdl-37198737

ABSTRACT

Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.


Subject(s)
Eukaryota , Viruses , Humans , Animals , Alternative Splicing , Plant Diseases
19.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047681

ABSTRACT

The post-transcriptional regulation of gene expression, in particular alternative splicing (AS) events, substantially contributes to the complexity of eukaryotic transcriptomes and proteomes [...].


Subject(s)
Alternative Splicing , Genomics , Biological Evolution , Transcriptome , Stress, Physiological/genetics
20.
Plants (Basel) ; 12(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37111852

ABSTRACT

The beneficial role of glycine betaine (GB) in the adaptation of plants to abiotic stresses is well known; therefore, the study of physiological and molecular responses induced by exogenous GB under NaCl stress can provide a suitable reference for the application of this compound to enhance the adaptation of plants to salinity. The present study was conducted under in vitro conditions to evaluate the effect of GB (25 and 50 mM) on the growth, physiological, and molecular traits of Stevia rebaudiana during NaCl toxicity (50 mM). The results showed that applying NaCl treatment increased Na accumulation, induced oxidative stress, and disrupted N metabolism and K/Na homeostasis, which, as a result, decreased the stevia plant's growth and biomass. However, application of GB improved the adaptation of NaCl-stressed plants by improving N metabolism and modulating the metabolism of polyamines. By increasing the activity of antioxidant enzymes, GB diminished oxidative stress, protected the plasma membrane, and restored photosynthetic pigments under NaCl toxicity. By reducing Na accumulation and increasing K accumulation, GB maintained the K/Na balance and reduced the effects of toxicity caused by the high Na concentration in stevia leaves. GB increased the leaf accumulation of rebaudioside A in NaCl-stressed plants by modulating the expression of genes (KAH, UGT74G1, UGT76G1, and UGT85C2) involved in the sugar compounds of the stevia plants. Our results provide a broad understanding of GB-induced responses in NaCl-stressed plants, which can help increase our knowledge of the role of GB in the defense mechanisms of plants under abiotic stresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...