Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Biomed Environ Sci ; 37(6): 581-593, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988109

ABSTRACT

Objective: Triple-negative breast cancer (TNBC) poses a significant challenge for treatment efficacy. CD8+ T cells, which are pivotal immune cells, can be effectively analyzed for differential gene expression across diverse cell populations owing to rapid advancements in sequencing technology. By leveraging these genes, our objective was to develop a prognostic model that accurately predicts the prognosis of patients with TNBC and their responsiveness to immunotherapy. Methods: Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas and METABRIC databases. In the initial stage, we identified 67 differentially expressed genes associated with immune response in CD8+ T cells. Subsequently, we narrowed our focus to three key genes, namely CXCL13, GBP2, and GZMB, which were used to construct a prognostic model. The accuracy of the model was assessed using the validation set data and receiver operating characteristic (ROC) curves. Furthermore, we employed various methods, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, immune infiltration, and correlation analyses with CD274 (PD-L1) to explore the model's predictive efficacy in immunotherapeutic responses. Additionally, we investigated the potential underlying biological pathways that contribute to divergent treatment responses. Results: We successfully developed a model capable of predicting the prognosis of patients with TNBC. The areas under the curve (AUC) values for the 1-, 3-, and 5-year survival predictions were 0.618, 0.652, and 0.826, respectively. Employing this risk model, we stratified the samples into high- and low-risk groups. Through KEGG enrichment analysis, we observed that the high-risk group predominantly exhibited enrichment in metabolism-related pathways such as drug and chlorophyll metabolism, whereas the low-risk group demonstrated significant enrichment in cytokine pathways. Furthermore, immune landscape analysis revealed noteworthy variations between (PD-L1) expression and risk scores, indicating that our model effectively predicted the response of patients to immune-based treatments. Conclusion: Our study demonstrates the potential of CXCL13, GBP2, and GZMB as prognostic indicators of clinical outcomes and immunotherapy responses in patients with TNBC. These findings provide valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Humans , CD8-Positive T-Lymphocytes/immunology , Prognosis , Female
2.
Huan Jing Ke Xue ; 45(1): 61-70, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216458

ABSTRACT

In August 2022, Chengdu and Chongqing showed significant differences in ozone (O3) pollution. Chengdu had O3 pollution days for 20 days, whereas Chongqing had no O3 pollution days. In this study, we analyzed the influencing factors of this difference from the emission level of precursors and meteorological conditions. The results showed that:① the total mixing ratio of 52 VOCs (volatile organic compounds) (including 26 alkanes, 16 aromatics, and 10 alkenes) in Chengdu (18.8×10-9) was 2.8 times that of Chongqing (6.6×10-9), and the total O3 formation potential (OFP) (51.2×10-9) was 2.0 times that of Chongqing (25.0×10-9). The·OH radical loss rate (L·OH) (3.9 s-1) was 1.7 times that of Chongqing (2.3 s-1). The top three OFP in Chengdu were ethylene, m/p-xylene, and isoprene, and those in Chongqing were isoprene, ethylene, and propylene. The contribution rate of alkenes to O3 in Chongqing was 60.7%, whereas the OFP of alkenes and aromatics in Chengdu were 1.6 times and 2.9 times that in Chongqing. In conclusion, the total mixing ratio of VOCs, atmospheric photochemical activity, and O3 formation potential of Chengdu were higher than those of Chongqing. ② Isoprene was ranked first place in L·OH in both Chengdu and Chongqing, indicating that the contribution of biogenic sources to O3 pollution in August was significant. However, the biogenic source emission activity was in response to temperature. From August 14 to 24, the high temperature in Chongqing (38.3℃) decreased biogenic source emission activity, whereas the temperature in Chengdu (34.9℃) increased the biogenic sources emission activity. ③ The horizontal and vertical atmospheric diffusion conditions of Chongqing were better than those of Chengdu, and Chengdu was affected by regional pollution transmission.

4.
Huan Jing Ke Xue ; 43(1): 113-122, 2022 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-34989495

ABSTRACT

Due to the high altitude of plateau cities and strong ultraviolet radiation, the sources and fates of volatile organic compounds show unique characteristics. In this study, the atmospheric volatile organic compound (VOCs) samples were collected at two urban sites and one background site using tank sampling in Lhasa in 2019, and then the composition, concentration, and sources were characterized. The results showed that the average φ(VOCs) in Lhasa was 49.83×10-9, of which the proportion of alkanes was the highest (61%), followed by OVOCs (12%), halogenated hydrocarbons (9%), olefin (9%), aromatic hydrocarbons (5%), and alkynes (4%). The respective contributions of VOCs sources at urban sites, such as Barkhor Street and Radiation Station in Lhasa, were as follows:combustion (64% and 48%) > traffic emission (17% and 31%) > industrial emission (14% and 14%) > solvents and coatings (3% and 3%) ≈plant+background (2% and 4%). The contribution of combustion was large mostly due to local incense burning (especially at Barkhor Street) and heating emissions. Traffic emissions contributed about one third to the VOCs at Radiation Station, which is related to its proximity to the transportation hub and the storage and logistics center upwind. Industrial emissions have a regional impact on ambient VOCs. Under the synergistic influence of meteorology and emissions, VOCs concentration, composition characteristics, and source contribution showed obvious seasonal variations and site differences in the Lhasa area.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Ultraviolet Rays , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
5.
Huan Jing Ke Xue ; 42(6): 2648-2658, 2021 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-34032064

ABSTRACT

Oxygenated volatile organic compounds (OVOCs) are important intermediates in the troposphere and the most important sources of ozone. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) was used to measure VOCs in the Chengdu Plain, Southwestern China. The diurnal variations, photochemical reactivity, O3 formation potential, and sources were also investigated. The mixing ratios of ten kinds of VOCs (acetaldehyde, acetone, isoprene, Methyl ethyl ketone, Methyl vinyl ketone and Methacrolein, benzene, toluene, styrene, C8 aromatics, and C9 aromatics) were (10.97±4.69)×10-9. The concentrations of OVOCs, aromatic hydrocarbons, and biogenic VOCs were (8.54±3.44)×10-9, (1.53±0.93)×10-9, and (0.90±0.32)×10-9, respectively. Isoprene, acetaldehyde, and m-xylene were the top three photochemically active species with the greatest O3 formation potentials. The dominant three OVOCs species (acetaldehyde, acetone, and MEK) were mainly derived from local biogenic sources and anthropogenic secondary sources, and acetone had a strong regional background level, indicating that pollution in this area is significantly affected by regional transmission. This study deepens the understanding of regional O3 formation mechanisms in southwest China and provides a basis for the scientifically informed control of O3 pollution.

6.
Kaohsiung J Med Sci ; 36(8): 581-591, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32311203

ABSTRACT

To find out the role of hsa-miR-570-3p targeting CD274 in triple negative breast cancer (TNBC) via PI3K/AKT/mTOR signaling pathway. Hsa-miR-570-3p and CD274 expressions in 175 TNBC patients were detected by qRT-PCR and immunohistochemistry respectively. The human TNBC cell lines (MDA-MB-468 and MDA-MB-231) were used to verify the targeting relationship between hsa-miR-570-3p and CD274 via dual-luciferase reporter gene assay. Then, MDA-MB-468 and MDA-MB-231 cells were divided into Blank, miR-NC, miR-570-3p mimics, NC siRNA, CD274 siRNA, and miR-570-3p inhibitors + CD274 siRNA groups. Next, the biological activities of cells were detected by MTT, Cell-Light EdU, Annexin-V-FITC/PI, wound healing and Transwell invasion assays. Western blotting was conducted to detect protein expressions.MiR-570-3p expression was lower in tumor tissues than that in adjacent normal tissues, which was more obvious in CD274-positive TNBC patients, which targeted CD274 in TNBC cell lines. MiR-570-3p inhibited cell proliferation, invasion and migration, but induced cell apoptosis accompanying the upregulation of apoptotic proteins and downregulation of anti-apoptotic protein. CD274 siRNA had the similar results of miR-570-3p mimics, which could be reversed by miR-570-3p inhibitors. Besides, both miR-570-3p mimics and CD274 siRNA blocked PI3K/AKT/mTOR signaling pathway in TNBC cell lines. Hsa-miR-570-3p was downregulated and CD274 was upregulated in TNBC patients. Besides, hsa-miR-570-3p targeted CD274 to inhibit cell proliferation, invasion, migration, and induce cell apoptosis, which may be related to the suppression of PI3K/AKT/mTOR pathway.


Subject(s)
B7-H1 Antigen/metabolism , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/genetics , Apoptosis/genetics , B7-H1 Antigen/genetics , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...