Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 832
Filter
1.
J Exp Bot ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829390

ABSTRACT

The interactions of insect vector-virus-plant have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite, cotton leaf curl Multan betasatellite (CLCuMuB) enhance the performance of B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in the wild type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of the tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.

2.
Opt Lett ; 49(9): 2369-2372, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691721

ABSTRACT

Perfluorinated acrylate polymer materials exhibit low absorption loss at 1310 and 1550 nm, but molecular oxygen inhibits their photocuring. We propose a novel, to our knowledge, UV photolithography method incorporating a pre-exposure process for fabricating low-loss perfluorinated acrylate polymer waveguides. During the pre-exposure process, a partially cured thin layer forms on the core layer, effectively overcoming oxygen inhibition in subsequent lithography. Furthermore, the functional group contents of the polymerized materials were characterized by a Raman spectrometer to analyze the development reaction under the pre-exposure layer. Utilizing this improved method, we fabricated a straight waveguide with a length of 21 cm. The experiments showed that the propagation losses are 0.14 dB/cm at 1310 nm and 0.51 dB/cm at 1550 nm. The inter-channel cross talk for a core pitch of 250 µm was measured as low as -49 dB at 1310 nm. Error-free NRZ data transmission over this waveguide at 25 Gb/s was achieved, showcasing the potential in optical interconnect and communication applications.

3.
J Clin Anesth ; 96: 111493, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723416

ABSTRACT

STUDY OBJECTIVE: The use of hydroxyethyl starch 130/0.4 has been linked to renal injury in critically ill patients, but its impact on surgical patients remains uncertain. DESIGN: A retrospective cohort study. SETTING: This study was conducted at one tertiary care hospital in China. PATIENTS: We evaluated the records of 51,926 Chinese adults who underwent noncardiac surgery from 2013 to 2022. Patients given a combination of hydroxyethyl starch 130/0.4 and crystalloids were propensity-matched at a 1: 1 ratio of baseline characteristics to patients given only crystalloids (11,725 pairs). INTERVENTIONS: Eligible patients were divided into those given a combination of hydroxyethyl starch 130/0.4 and crystalloid during surgery and a reference crystalloid group consisting of patients who were not given any colloid. MEASUREMENTS: The primary outcome was the incidence of acute kidney injury. Secondarily, acute kidney injury stage, need for renal replacement therapy, intensive care unit transfer rate, and duration of postoperative hospitalization were considered. MAIN RESULTS: After matching, hydroxyethyl starch use [8.5 (IQR: 7.5-10.0) mL/kg] did not increase the incidence of acute kidney injury compared with that in the crystalloid group [2.0 vs. 2.2%, OR: 0.90 (0.74-1.08), P = 0.25]. Nor did hydroxyethyl starch use worsen acute kidney injury stage [OR 0.90 (0.75-1.08), P = 0.26]. No significant differences between the fluid groups were observed in renal replacement therapy [OR 0.60 (0.41-0.90), P = 0.02)] or intensive care unit transfers [OR 1.02 (0.95-1.09), P = 0.53] after Bonferroni correction. Even in a subset of patients at high risk of renal injury, hydroxyethyl starch use was not associated with worse outcomes. CONCLUSIONS: Hydroxyethyl starch 130/0.4 use was not significantly associated with a greater incidence of postoperative acute kidney injury compared to receiving crystalloid solutions only.

4.
Nat Commun ; 15(1): 3834, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714741

ABSTRACT

Sleep disorders increase the risk and mortality of heart disease, but the brain-heart interaction has not yet been fully elucidated. Cuproptosis is a copper-dependent type of cell death activated by the excessive accumulation of intracellular copper. Here, we showed that 16 weeks of sleep fragmentation (SF) resulted in elevated copper levels in the male mouse heart and exacerbated myocardial ischemia-reperfusion injury with increased myocardial cuproptosis and apoptosis. Mechanistically, we found that SF promotes sympathetic overactivity, increases the germination of myocardial sympathetic nerve terminals, and increases the level of norepinephrine in cardiac tissue, thereby inhibits VPS35 expression and leads to impaired ATP7A related copper transport and copper overload in cardiomyocytes. Copper overload further leads to exacerbated cuproptosis and apoptosis, and these effects can be rescued by excision of the sympathetic nerve or administration of copper chelating agent. Our study elucidates one of the molecular mechanisms by which sleep disorders aggravate myocardial injury and suggests possible targets for intervention.


Subject(s)
Apoptosis , Copper , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Myocytes, Cardiac , Sleep Deprivation , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Copper/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Mice , Sleep Deprivation/physiopathology , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Copper-Transporting ATPases/metabolism , Copper-Transporting ATPases/genetics , Norepinephrine/metabolism , Norepinephrine/pharmacology , Myocardium/metabolism , Myocardium/pathology , Sympathetic Nervous System/metabolism , Disease Models, Animal
5.
Nat Commun ; 15(1): 4463, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796473

ABSTRACT

Polaritons are well-established carriers of light, electrical signals, and even heat at the nanoscale in the setting of on-chip devices. However, the goal of achieving practical polaritonic manipulation over small distances deeply below the light diffraction limit remains elusive. Here, we implement nanoscale polaritonic in-plane steering and cloaking in a low-loss atomically layered van der Waals (vdW) insulator, α-MoO3, comprising building blocks of customizable stacked and assembled structures. Each block contributes specific characteristics that allow us to steer polaritons along the desired trajectories. Our results introduce a natural materials-based approach for the comprehensive manipulation of nanoscale optical fields, advancing research in the vdW polaritonics domain and on-chip nanophotonic circuits.

6.
PeerJ ; 12: e17371, 2024.
Article in English | MEDLINE | ID: mdl-38708338

ABSTRACT

Background: Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods: P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions: Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.


Subject(s)
Acetates , Basic-Leucine Zipper Transcription Factors , Cyclopentanes , Gene Expression Regulation, Plant , Oxylipins , Phylogeny , Platycodon , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Acetates/pharmacology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Platycodon/genetics , Platycodon/metabolism , Stress, Physiological/genetics , Stress, Physiological/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Plant Growth Regulators/pharmacology
7.
Cell Biochem Biophys ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753250

ABSTRACT

Chronic heart failure (CHF) is a complex multifactorial clinical syndrome leading to abnormal cardiac structure and function. The severe form of this ailment is characterized by high disability, high mortality, and morbidity. Worldwide, 2-17% of patients die at first admission, of which 17-45% die within 1 year of admission and >50% within 5 years. Yangshen Maidong Decoction (YSMDD) is frequently used to treat the deficiency and pain of the heart. The specific mechanism of action of YSMDD in treating CHF, however, remains unclear. Therefore, a network pharmacology-based strategy combined with molecular docking and molecular dynamics simulations was employed to investigate the potential molecular mechanism of YSMDD against CHF. The effective components and their targets of YSMDD and related targets of CHF were predicted and screened based on the public database. The network pharmacology was used to explore the potential targets and possible pathways that involved in YSMDD treated CHF. Molecular docking and molecular dynamics simulations were performed to elucidate the binding affinity between the YSMDD and CHF targets. Screen results, 10 main active ingredients, and 6 key targets were acquired through network pharmacology analysis. Pathway enrichment analysis showed that intersectional targets associated pathways were enriched in the Prostate cancer pathway, Hepatitis B pathway, and C-type lectin receptor signaling pathways. Molecular docking and molecular dynamics simulations analysis suggested 5 critical active ingredients have high binding affinity to the 5 key targets. This research shows the multiple active components and molecular mechanisms of YSMDD in the treatment of CHF and offers resources and suggestions for future studies.

8.
Ren Fail ; 46(1): 2356022, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38803195

ABSTRACT

Secondary hyperparathyroidism (SHPT) can progress to severe SHPT (sSHPT), which affects the survival rate and quality of life of patients. This retrospective cohort study investigated risk factors for sSHPT and the association between SHPT and mortality (all-cause and infection-related) among 771 clinically stable patients (421 male patients; mean age, 51.2 years; median dialysis vintage, 28.3 months) who underwent >3 months of regular peritoneal dialysis (PD) between January 2013 and March 2021. The sSHPT and non-sSHPT groups comprised 75 (9.7%) (median progression, 35 months) and 696 patients, respectively. sSHPT was defined as a serum intact parathyroid hormone (PTH) level >800 pg/mL observed three times after active vitamin D pulse therapy. The influence of sSHPT on the prognosis of and risk factors for sSHPT progression were evaluated using logistic and Cox regression analyses. After adjusting for confounding factors, higher (each 100-pg/mL increase) baseline PTH levels (95% confidence interval (CI) 1.206-1.649, p < .001), longer (each 1-year increase) dialysis vintages (95% CI 1.013-1.060, p = .002), higher concomitant diabetes rates (95% CI 1.375-10.374, p = .010), and lower (each 1-absolute unit decrease) Kt/V values (95% CI 0.859-0.984, p = .015) were independent risk factors for progression to sSHPT in patients on PD. During follow-up, 211 deaths occurred (sSHPT group, n = 35; non-sSHPT group, n = 176). The sSHPT group had significantly higher infection-related mortality rates than the non-sSHPT group (12.0% vs. 4.3%; p < .05), and sSHPT was associated with increased infection-related mortality. In conclusion, patients with sSHPT are at higher risk for death and infection-related mortality than patients without sSHPT.


Subject(s)
Hyperparathyroidism, Secondary , Kidney Failure, Chronic , Parathyroid Hormone , Peritoneal Dialysis , Humans , Male , Hyperparathyroidism, Secondary/etiology , Hyperparathyroidism, Secondary/blood , Middle Aged , Retrospective Studies , Female , Peritoneal Dialysis/adverse effects , Prognosis , Risk Factors , Parathyroid Hormone/blood , Adult , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/blood , Disease Progression , Proportional Hazards Models
9.
Front Genet ; 15: 1379784, 2024.
Article in English | MEDLINE | ID: mdl-38812971

ABSTRACT

Solanum pinnatisectum exhibits strong resistance to late blight caused by Phytophthora infestans but only an incomplete genome assembly based on short Illumina reads has been published. In this study, we generated the first chromosome-level draft genome for the wild-type potato species S. pinnatisectum in China using Oxford Nanopore technology sequencing and Hi-C technology. The high-quality assembled genome size is 664 Mb with a scaffold N50 value of 49.17 Mb, of which 65.87% was occupied by repetitive sequences, and predominant long terminal repeats (42.51% of the entire genome). The genome of S. pinnatisectum was predicted to contain 34,245 genes, of which 99.34% were functionally annotated. Moreover, 303 NBS-coding disease resistance (R) genes were predicted in the S. pinnatisectum genome to investigate the potential mechanisms of resistance to late blight disease. The high-quality chromosome-level reference genome of S. pinnatisectum is expected to provide potential valuable resources for intensively and effectively investigating molecular breeding and genetic research in the future.

10.
Postepy Dermatol Alergol ; 41(2): 181-188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38784931

ABSTRACT

Introduction: As a catastrophic complication of bedridden and elderly patients, pressure ulcer usually continuously affects patients' health and quality of life, so the daily care of wounds is attached great importance in clinic. Aim: This work investigated the effect of Bikerui disinfectant + vacuum sealing drainage (VSD) + platelet-rich plasma (PRP) therapy on patients with stage III ~ IV pressure sore. Material and methods: In this work, 110 patients with pressure ulcer (PU) treated in our hospital were enrolled and were randomly divided into an experimental group (Exp group) and a control group (Ctrl group) by a blind selection method, with 55 cases in each group. Patients in the Ctrl group received surgical debridement + VSD for treatment, while those in the Exp group were treated with Bikerui disinfectant + VSD + PRP. Inflammatory response (IR) score, PU healing (PUH) score, healing time, dressing change frequency (DCF), dressing interval time (DIT), and scar recovery (SR) score of patients in different groups were compared. Results: The results revealed that the positive rate of bacterial culture in wound secretions in the Exp group was greatly lower than that in the Ctrl group 1 or 2 weeks after treatment (p < 0.05). The IR score in the Exp group was much lower at week 1 and 2 after treatment (p < 0.05). The total effective rate (TER) in the Exp group was obviously higher than that in the Ctrl group (94.55% vs. 76.36%). Conclusions: The results suggested that Bikerui disinfectant + VSD + PRP therapy could effectively improve the inflammatory degree of PU patients, promote the wound repair and scar recovery of patients, and greatly improve the clinical efficacy of PU patients.

11.
Article in English | MEDLINE | ID: mdl-38804899

ABSTRACT

Breviscapine (Bre), an extract from Erigeron breviscapus, has been widely used to treat cerebral ischemia but the mechanisms of its neuroprotective effects need to be clarified. The present study investigated whether Bre could alleviate excessive autophagy induced by cerebral ischemia in the rat middle cerebral artery occlusion (MCAO) ischemia model via activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5)/B-cell lymphoma 2 (BCL2) pathway. Rats were randomly divided into 5 groups, i.e. Sham group, MCAO+saline group, MCAO+Bre group, MCAO+DMSO (Dimethyl sulfoxide) group, and MCAO+Bre+AG490 (Tyrphostin AG490, the inhibitor of STAT5) group. The model was established and neuroprotection was evaluated by determining infarct volumes and conducting neurological behavioral tests. Autophagy levels in the infarct penumbra were detected using transmission electron microscopy and Western blotting. The expression of proteins in the JAK2/STAT5/BCL2 pathway was tested by Western blotting. Compared to the MCAO+saline group, the infarct volumes in the MCAO+Bre group were significantly reduced and neurological behavior improved. Breviscapine administration also significantly increased p-JAK2, p-STAT5, and BCL2 expression but decreased autolysosome numbers; it also downregulated Beclin-1 expression and the LC3II/LCI ratio. The JAK2 inhibitor AG490 reversed these effects. These findings indicate that breviscapine can improve neural recovery following ischemia through alleviating excessive autophagy and activation of the JAK2/STAT5/BCL2 axis.

12.
Front Psychol ; 15: 1385480, 2024.
Article in English | MEDLINE | ID: mdl-38577115
13.
Heliyon ; 10(7): e27475, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560189

ABSTRACT

We determined RNA spectrum of the human RSK4 (hRSK4) gene (also called RPS6KA6) and identified 29 novel mRNA variants derived from alternative splicing, which, plus the NCBI-documented ones and the five we reported previously, totaled 50 hRSK4 RNAs that, by our bioinformatics analyses, encode 35 hRSK4 protein isoforms of 35-762 amino acids. Many of the mRNAs are bicistronic or tricistronic for hRSK4. The NCBI-normalized NM_014496.5 and the protein it encodes are designated herein as the Wt-1 mRNA and protein, respectively, whereas the NM_001330512.1 and the long protein it encodes are designated as the Wt-2 mRNA and protein, respectively. Many of the mRNA variants responded differently to different situations of stress, including serum starvation, a febrile temperature, treatment with ethanol or ethanol-extracted clove buds (an herbal medicine), whereas the same stressed situation often caused quite different alterations among different mRNA variants in different cell lines. Mosifloxacin, an antibiotics and also a functional inhibitor of hRSK4, could inhibit the expression of certain hRSK4 mRNA variants. The hRSK4 gene likely uses alternative splicing as a handy tool to adapt to different stressed situations, and the mRNA and protein multiplicities may partly explain the incongruous literature on its expression and comports.

14.
Arch Esp Urol ; 77(2): 183-192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583011

ABSTRACT

PURPOSE: This study aimed to determine the influence of miR-1297 on kidney injury in rats with diabetic nephropathy (DN) and its causal role. METHODS: A DN rat model was established through right kidney resection and intraperitoneal injection of streptozotocin (STZ). Sham rats did not undergo right kidney resection or STZ injection. The DN rats were divided into the DN model and antagomiR-1297 treatment groups. Kidney morphology was observed using hematoxylin and eosin staining. Renal function indices, including blood urea nitrogen (BUN), serum creatinine (SCr), and urinary protein, were measured using kits. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined through enzyme-linked immunosorbent assay (ELISA). Fibrin (FN), collagen type I (Col I), and α-smooth muscle actin (α-SMA) were assessed through western blotting and real-time reverse transcription-polymerase chain reaction. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. miR-1297 targets were predicted using bioinformatic software and verified through luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway expression was analyzed through western blotting. RESULTS: AntagomiR-1297 reduced BUN (p = 0.005), SCr (p = 0.012), and urine protein (p < 0.001) levels and improved kidney tissue morphology. It prevented renal interstitial fibrosis by decreasing FN, Col I, and α-SMA protein levels (all p < 0.001). AntagomiR-1297 increased SOD (p = 0.001) and GSH-Px (p = 0.002) levels. Additionally, it reduced levels of cell inflammatory factors, including TNF-α, IL-6, and IL-1ß (all p < 0.001), and alleviated apoptosis (p < 0.001) in rat kidney tissue with DN. miR-1297 was pinpointed as a target for PTEN. AntagomiR-1297 increased PTEN expression and suppressed PI3K and AKT phosphorylation (all p < 0.001). CONCLUSIONS: AntagomiR-1297 can mitigate renal fibrosis, renal inflammation, apoptosis, and oxidative stress levels through the PTEN/PI3K/AKT pathway.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Rats , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Antagomirs/metabolism , Antagomirs/pharmacology , Kidney , MicroRNAs/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Diabetes Mellitus/metabolism
15.
Cerebellum ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558026

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.

16.
Infect Drug Resist ; 17: 1571-1582, 2024.
Article in English | MEDLINE | ID: mdl-38681898

ABSTRACT

Purpose: The study aimed to explore the reasons, efficacy, and safety of switching to dolutegravir (DTG) based regimens in virologically suppressed people living with HIV (PLWH) in tertiary hospitals in China. Therefore, the study could provide a valuable reference for the rational clinical use of DTG. Methods: PLWH's basic information, treatment details, and reasons for switching were collected, through the electrical clinical medical record system and telephone follow-up. Data included the proportion of PLWH with HIV RNA <50 copies/mL, changes in immunological indicators, and metabolic metrics at week 48 and week 96. Results: 319 PLWH were included in the analysis. The three major reasons for switching were neurological toxicity (16.30%), simplification (13.79%), and renal toxicity (11.29%). Our study showed high rates of virologic suppression in the per-protocol analysis (week 48: 99.69%; week 96: 99.29%) after switching to DTG-based regimens. The median CD4+ T cell count increased from 579 cells/µL (IQR 420.5-758) to 642 cells/µL (IQR 466.5-854) at week 96 (p<0.0001). An improvement was observed in liver function (ALT: p<0.0001; AST: p<0.0001) and fasting glucose (p<0.0001). However, there was an elevation in creatinine (Cr) (p<0.0001) and a slight decrease in the estimated glomerular filtration rate (eGFR) (p<0.0001). Regarding lipid profile, triglyceride (TG) levels declined, while total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels increased. Further analysis revealed that the increase in TC and LDL-C was associated with the withdrawal of tenofovir disoproxil fumarate (TDF). This observed increase in lipid parameters only concerned the PLWH who switched from a TDF-containing regimen to a non-TDF regimen. Conclusion: This study confirmed the virologic efficacy of switching to DTG-based regimens in virologically suppressed PLWH over a 96-week period. The findings also expanded the evidence of immune reconstitution and metabolic safety associated with this switch.

17.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619479

ABSTRACT

Alzheimer's disease is a neurodegenerative disorder characterized by the presence of neurodegenerative lesions and cognitive impairment. In this study, a series of novel palmatine derivatives were designed and synthesized through the introduction of a heteroatom using carbodiimide-mediated condensation. The synthesized compounds were then screened for toxicity and potency, leading to the identification of compound 2q, which exhibited low toxicity and high potency. Our findings demonstrated that compound 2q displayed significant neuroprotective activity in vitro, emerging as a promising candidate for Alzheimer's disease treatment.

18.
Front Plant Sci ; 15: 1300683, 2024.
Article in English | MEDLINE | ID: mdl-38529062

ABSTRACT

Rational fertilization is the main measure to improve crop yield, but there are differences in the optimal effects of nitrogen (N), phosphorus (P) and potassium (K) rationing exhibited by the same crop species in different regions and soil conditions. In order to determine the optimum fertilization ratio for high yield of Sapindus mukorossi in western Fujian to provide scientific basis. We carried out the experimental design with different ratios of N, P and K to investigate the effects of fertilization on the yield. and leaf physiology of Sapindus mukorossiand soil properties. Results showed that the yield of Sapindus mukorossi reached the highest value (1464.58 kg ha-1) at N2P2K2 treatment, which increased to 1056.25 kg ha-1 compared with the control. There were significant differences in the responses of soil properties and leaf physiological factors to fertilization treatments. Factor analysis showed that the integrated scores of soil factors and leaf physiological characteristic factors of Sapindus mukorossi under N2P2K2 fertilization treatment were the highest, which effectively improved the soil fertility and leaf physiological traits. The yield of Sapindus mukorossi showed a highly significant linear positive correlation with the integrated scores (r=0.70, p<0.01). Passage analysis showed that soil available nitrogen content, organic carbon content, and leaf area index were the key main factors to affect the yield. RDA showed that soil organic carbon and available phosphorus were the most important factors to affect leaf physiological traits. We recommend that the optimum fertilization ratio of Sapindus mukorossi was 0.96Kg N, 0.80Kg P and 0.64Kg K per plant. Reasonable fertilization can improve soil fertility and leaf physiological traits, while excessive fertilization has negative effects on soil fertility, leaf physiology and yield. This study provides theoretical support for scientific cultivation of woody oil seed species.

19.
Materials (Basel) ; 17(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38541601

ABSTRACT

It is well known that the annealing process plays a key role in tuning the properties of Fe-based amorphous soft magnetic alloys. However, the optimal annealing process for a particular amorphous alloy is often difficult to determine. Here, Fe81.4B13.2C2.8Si1.8P0.8 and Fe82.2B12.4C2.8Si1.8P0.8 amorphous alloys (denoted as Fe81.4 and Fe82.2) were prepared to systematically study the effects of the annealing temperature and time on the soft magnetic properties. The results show that the optimum annealing temperature ranges of the Fe81.4 and Fe82.2 amorphous alloys were 623 K to 653 K and 593 K to 623 K, and their coercivity (Hc) values were only 2.0-2.5 A/m and 1.3-2.7 A/m, respectively. Furthermore, a characteristic temperature Tai was obtained to guide the choosing of the annealing temperature at which the dBs/dT begins to decrease rapidly. Based on the theory of spontaneous magnetization, the relationship between Tai and the optimum annealing temperature ranges was analyzed. When the annealing temperature was higher than Tai, the effect of the internal magnetic field generated by spontaneous magnetization on the relaxation behavior was significantly reduced, and the alloys exhibited excellent soft magnetic properties. It is worth indicating that when annealed at 603 K (slightly higher than Tai), the Fe82.2 amorphous alloys exhibited excellent and stable soft magnetic properties even if annealed for a long time. The Hc of Fe82.2B12.4C2.8Si1.8P0.8 amorphous alloys was only 1.9 A/m when annealed at 603 K for 330 min. This value of Tai is expected to provide a suggestion for the proper annealing temperature of other amorphous soft magnetic alloys.

20.
J Chromatogr A ; 1720: 464813, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38490142

ABSTRACT

Estrogens and bisphenols are typical endocrine disruptors (EDs) that pose a potential hazard to the human body due to their widespread presence in aqueous environments. In this study, a ß-cyclodextrin porous crosslinked polymer (ß-CD-PCP) was prepared in-situ on a glass fiber surface by a nucleophilic substitution reaction. An effective and sensitive solid phase microextraction method using functionalized glass fiber with ß-CD-PCP coating as the adsorbent was established for the detection of 11 EDs in a water environment. The ß-CD-PCP was in-situ prepared on a glass fiber surface by a nucleophilic substitution reaction. The ß-CD-PCP successfully separated five estrogens (ESTs) and six bisphenols (BPs) through hydrophobic and π-π interactions. The conditions affecting extraction were optimized. Under the optimized conditions, the ESTs obtained a high enrichment effect (1795-2328), low limits of detection (0.047 µg L-1) and a good linearity range (0.2-15.0 µg L-1). Furthermore, the spiked recoveries of analyte ESTs in aqueous environments were between 82.9-115.7 %. The results indicated that the prepared functionalized glass fibers exhibited good adsorption properties, and the established analytical method was reliable for monitoring trace ESTs and BPs in aqueous environments.


Subject(s)
Endocrine Disruptors , Glass , Humans , Endocrine Disruptors/analysis , Water/chemistry , Solid Phase Microextraction/methods , Estrogens/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...