Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.788
Filter
1.
Spinal Cord ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824252

ABSTRACT

STUDY DESIGN: Cross-sectional study. OBJECTIVES: To study the relationship between the structural changes in the cervical spinal cord (C2/3 level) and the sensorimotor function of children with traumatic thoracolumbar spinal cord injury (TLSCI) and to discover objective imaging biomarkers to evaluate its functional status. SETTING: Xuanwu Hospital, Capital Medical University, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, China. METHODS: 30 children (age range 5-13 years) with TLSCI and 11 typically developing (TD) children (age range 6-12 years) were recruited in this study. Based on whether there is preserved motor function below the neurological level of injury (NLI), the children with TLSCI are divided into the AIS A/B group (motor complete) and the AIS C/D group (motor incomplete). A Siemens Verio 3.0 T MR scanner was used to acquire 3D high-resolution anatomic scans covering the head and upper cervical spinal cord. Morphologic parameters of the spinal cord at the C2/3 level, including cross-sectional area (CSA), anterior-posterior width (APW), and left-right width (LRW) were obtained using the spinal cord toolbox (SCT; https://www.nitrc.org/projects/sct ). Correlation analyses were performed to compare the morphologic spinal cord parameters and clinical scores determined by the International Standard for Neurological Classification of Spinal Cord Injuries (ISNCSCI) examination. RESULTS: CSA and LRW in the AIS A/B group were significantly lower than those in the TD group and the AIS C/D group. LRW was the most sensitive imaging biomarker to differentiate the AIS A/B group from the AIS C/D group. Both CSA and APW were positively correlated with ISNCSCI sensory scores. CONCLUSIONS: Quantitative measurement of the morphologic spinal cord parameters of the cervical spinal cord can be used as an objective imaging biomarker to evaluate the neurological function of children with TLSCI. Cervical spinal cord atrophy in children after TLSCI was correlated with clinical grading; CSA and APW can reflect sensory function. Meanwhile, LRW has the potential to be an objective imaging biomarker for evaluating motor function preservation.

2.
Heliyon ; 10(10): e31588, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826715

ABSTRACT

The COVID-19 pandemic has significantly impacted the tourism sector, particularly tour guides (TGs), affecting their professional identity (TGPI) and intentions to return to work. As China strives to revive its tourism industry, it is crucial to understand the current state of TGPI, its evolution, influencing factors, and its impact on TGs' return intentions. This study employed a quantitative approach, using comparative analysis and binary logistic regression, to investigate these issues among frontline TGs in China, pre- and post-pandemic. Cross-sectional surveys were conducted with 422 participants in 2019 and 398 in 2022, yielding 370 and 342 valid responses, respectively. The questionnaire utilized a five-point Likert scale. Findings reveal that (1) The overall TGPI level in 2022 post-pandemic is medium (3.93), showing a significant decrease from the pre-pandemic level in 2019 (4.15). (2) Influencing factors of TGPI are predominantly material, reflected in social insurance and income changes pre- and post-pandemic. (3) This study presents a novel definition and scale of TGPI, encompassing tour guides' professional value identity (TGPVI), emotion identity (TGPEI), relationship identity (TGPRI), and behavior tendency (TGPBT). (4) The two dimensions of the TGPI, TGPVI and TGPRI, income and education level, significantly influence TGs' return intentions. The study provides valuable academic and practical insights into TGPI and offers significant implications for enhancing TGs' return intentions and policymaking for post-pandemic tourism industry development.

3.
Mol Neurobiol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837104

ABSTRACT

Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.

5.
Kidney Int Rep ; 9(4): 1067-1071, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38765591

ABSTRACT

Introduction: Telitacicept, a transmembrane activator and cyclophilin ligand interactor (TACI) fusion protein targeting B cell activating factor and a proliferation-inducing ligand (APRIL), has proven efficacy in treating Immunoglobulin A (IgA) nephropathy (IgAN). However, serum biomarkers that could predict the clinical response during the treatment remain unclear. Methods: Plasma samples from 24 participants in the phase 2 clinical trial were collected at baseline and after 4, 12, and 24 weeks; with 8 participants in the placebo group, 9 in the 160 mg group, and 7 in the 240 mg group. We measured the levels of galactose-deficient-IgA1 (Gd-IgA1), IgA-containing immune complexes, C3a, C5a, and sC5b-9. The association between the changes in these markers and proteinuria reduction was analyzed. Results: After 24 weeks of treatment, Gd-IgA1 decreased by 43.9% (95% confidence interval: 29.8%, 55.1%), IgG-IgA immune complex by 31.7% (14.4%, 45.5%), and poly-IgA immune complex by 41.3% (6.5%, 63.1%) in the 160 mg group; Gd-IgA1 decreased by 50.4% (38.6%, 59.9%), IgG-IgA immune complex decreased by 42.7% (29.5%, 53.4%), and poly-IgA immune complex decreased by 67.2% (48.5%,79.1%) in the 240 mg group. There were no significant changes in the circulatory C3a, C5a, or sC5b-9 levels during telitacicept treatment. Decreases in both plasma Gd-IgA1 and IgG-IgA or poly-IgA immune complexes were associated with proteinuria reduction. In turn, IgG-IgA or poly-IgA immune complexes showed a dose-dependent effect, consistent with proteinuria reduction during telitacicept treatment. Conclusion: Telitacicept lowered both circulating Gd-IgA1 and IgA-containing immune complexes, whereas IgA immune complex levels were more consistent with decreased proteinuria.

6.
Ren Fail ; 46(1): 2349122, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721891

ABSTRACT

Background: During the acute heart failure (AHF), acute kidney injury (AKI) is highly prevalent in critically ill patients. The occurrence of the latter condition increases the risk of mortality in patients with acute heart failure. The current research on the relationship between nutritional risk and the occurrence of acute kidney injury in patients with acute heart failure is very limited. Methods: This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV, version 2.1) database. We included adult patients with AHF who were admitted to the intensive care unit in the study. Results: A total of 1310 critically ill patients with acute heart failure were included. The AUC of geriatric nutritional risk index (GNRI) (0.694) is slightly superior to that of controlling nutritional status (CONUT) (0.656) and prognostic nutritional index (PNI) (0.669). The Log-rank test revealed a higher risk of acute kidney injury in patients with high nutritional risk (p < 0.001). Multivariate COX regression analysis indicated that a high GNRI (adjusted HR 0.62, p < 0.001) was associated with a reduced risk of AKI during hospitalization in AHF patients. The final subgroup analysis demonstrated no significant interaction of GNRI in all subgroups except for diabetes subgroup and ventilation subgroup (P for interaction: 0.057-0.785). Conclusion: Our study findings suggest a correlation between GNRI and the occurrence of acute kidney injury in patients hospitalized with acute heart failure.


Subject(s)
Acute Kidney Injury , Critical Illness , Heart Failure , Intensive Care Units , Nutrition Assessment , Nutritional Status , Humans , Heart Failure/epidemiology , Heart Failure/complications , Female , Male , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Retrospective Studies , Aged , Intensive Care Units/statistics & numerical data , Middle Aged , Aged, 80 and over , Risk Factors , Risk Assessment , Geriatric Assessment , Prognosis , Proportional Hazards Models
7.
Sci Rep ; 14(1): 11704, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778121

ABSTRACT

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Subject(s)
Artemisinins , Cell Proliferation , DNA Damage , ErbB Receptors , GTP Phosphohydrolases , Lung Neoplasms , Membrane Proteins , Signal Transduction , ErbB Receptors/metabolism , Humans , Cell Proliferation/drug effects , Artemisinins/pharmacology , DNA Damage/drug effects , Signal Transduction/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , GTP Phosphohydrolases/metabolism , Animals , Apoptosis/drug effects , Molecular Docking Simulation , A549 Cells , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Protein Binding
8.
Langmuir ; 40(22): 11541-11547, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767530

ABSTRACT

Methyl acetate (MA) is a suitable solvent for low-temperature electrolyte solutions, but its poor stability against lithium metal is a big problem. Herein, a simple and cheap solution of LiPF6 dissolved in MA was successfully employed for Li4Ti5O12/graphite dual-ion batteries (DIBs). This cell has a long cycle life with 93.1% capacity retention after 1000 cycles. Moreover, it has superior performance at low temperatures (-40 °C) compared to other reported DIBs. The storage behavior of PF6- solvated by MA in graphite cathode has been investigated in detail by in situ X-ray diffraction (XRD) in combination with electrochemical dilatometry (ECD).

10.
J Food Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752388

ABSTRACT

The increasing concerns about health have led to a growing demand for high-quality fried foods. The potential uses of Ligustrum robustum (Rxob.) Blume, a traditional tea in China, as natural additives to enhance the quality of starchy food during frying was studied. Results indicated that L. robustum polyphenols extract (LREs) could improve the quality of fried starchy food, according to the tests of color, moisture content, oil content, texture property, and volatile flavor. The in vitro digestion results demonstrated that LRE reduced the final glucose content from 11.35 ± 0.17 to 10.80 ± 0.70 mmol/L and increased the phenolic content of fried starch foods from 1.23 ± 0.04 to 3.76 ± 0.14 mg/g. The appearance and polarizing microscopy results showed that LRE promoted large starch bulges on the surface of fried starchy foods. Meanwhile, X-ray diffraction results showed that LRE increased the intensity of characteristic diffraction peak of fried starch with a range of 21.8%-28%, and Fourier transform infrared results showed that LRE reduced the damage to short-range order structure of starch caused by the frying process. In addition, LRE increased the aggregation of starch granules according to the SEM observation and decreased the enthalpy of starch gelatinization based on the differential scanning calorimetry results. The present results suggest that LREs have the potential to be utilized as a natural additive for regulating the quality of fried starchy food in food industries. PRACTICAL APPLICATION: The enhancement of L. robustum polyphenols on the quality of starchy food during frying was found, and its mechanisms were also explored. This work indicated that L. robustum might be used as a novel economic natural additive for producing high-quality fried foods.

11.
Phytother Res ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761036

ABSTRACT

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

12.
Water Res ; 258: 121775, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38761596

ABSTRACT

Excessive sulfate levels in water bodies pose a dual threat to the ecological environment and human health. The microbial removal of sulfate encounters challenges, particularly in environments with high sulfate concentrations, where the gradual accumulation of sulfide hampers microbial activity. This study focuses on elucidating the mechanisms underlying the enhancement of microbial sulfate reduction in high-concentration sulfate wastewater through a comparative analysis of maifanite and zeolite biostimulants. The investigation reveals that zeolite primarily facilitates microbial growth by providing attachment sites, while maifanite augments sulfate-reducing bacteria (SRB) activity through the release of active substances such as Mo, Ca, and Cu. The addition of maifanite proves instrumental in enhancing microbial activity, manifesting as increased microbial load and protein production, augmented extracellular polymer generation, accelerated electron transfer, and facilitated microbial growth and biofilm formation. Noteworthy is the observation that the combined application of maifanite and zeolite exhibited a synergistic effect, resulting in a 167 % and 68 % increase in sulfate reduction rate compared to the utilization of maifanite (0.12 d-1) or zeolite (0.19 d-1) in isolation. Within this synergistic context, the relative abundance of Desulfobacteraceae reaches a peak of 15.4 %. The outcomes of this study corroborate the distinct promotion mechanisms of maifanite and zeolite in microbial sulfate reduction, offering novel insights into the application of maifanite in the context of high-concentration sulfate removal.

13.
Adv Mater ; : e2402456, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810924

ABSTRACT

Epigenetic drugs (epi-drugs) can destruct cancer cells and initiate both innate and adaptive immunity, yet they have achieved very limited success in solid tumors so far, partly attributing to their concurrent induction of the myeloid-derived suppressor cell (MDSC) population. Here, dissociable Siamese nanoparticles (SIANPs) are developed for tumor cell-targeted delivery of epi-drug CM-272 and MDSC-targeted delivery of small molecule inhibitor Ibrutinib. The SIANPs are assembled via interparticle DNA annealing and detached via tumor microenvironment-triggered strand separation. Such binary regulation induces endogenous retrovirus expression and immunogenic cell death in tumor cells while restraining the immunosuppressive effects of MDSCs, and synergistically promotes dendritic cell maturation and CD8+ T cell activation for tumor inhibition. Significantly, immune microenvironment remodeling via SIANPs further overcomes tumor resistance to immune checkpoint blockade therapy. This study represents a two-pronged approach for orchestrating immune responses, and paves a new way for employing epi-drugs in cancer immunotherapy.

14.
Mol Cell Probes ; 76: 101964, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38810840

ABSTRACT

Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.

15.
Ecol Evol ; 14(5): e11214, 2024 May.
Article in English | MEDLINE | ID: mdl-38725828

ABSTRACT

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

16.
PLoS One ; 19(5): e0302865, 2024.
Article in English | MEDLINE | ID: mdl-38723016

ABSTRACT

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Subject(s)
Antibodies, Monoclonal , Influenza A Virus, H1N1 Subtype , Neuraminidase , Neuraminidase/immunology , Neuraminidase/metabolism , Neuraminidase/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Influenza A Virus, H1N1 Subtype/immunology , Humans , Animals , Antibodies, Viral/immunology , Mice , Influenza A Virus, H5N1 Subtype/immunology , Mice, Inbred BALB C , Antiviral Agents/pharmacology , Viral Proteins/immunology , Viral Proteins/metabolism , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology
17.
Inorg Chem ; 63(19): 8977-8987, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38690714

ABSTRACT

Integration of hydrogen evolution with the oxidation of organic substances in one electrochemical system is highly desirable. However, achieving selective oxidation of organic substances in the integrated system is still highly challenging. In this study, a phosphorylated NiMoO4 nanoneedle-like array was designed as the catalytic active electrode for the integration of highly selective electrochemical dehydrogenation of tetrahydroisoquinolines (THIQs) with hydrogen production. The leaching of anions, including MoO42- and PO43-, facilitates the reconstruction of the catalyst. As a result, nickel oxyhydroxides with the doping of PO43- and richness of defects are in situ formed. In situ Raman and density functional theory calculations have shown that the high catalytic activity is attributed to the in situ formed PO43- involved NiOOH substance. In the dehydrogenation process, the involved C-H bond but not the N-H bond is first destroyed. A two-electrode system was then fabricated with the optimized electrode that shows a benchmark current density of 10 mA cm-2 at 1.783 V, providing a yield of 70% for dihydroisoquinolines. A robust stability was also shown for this integrated electrochemical system. The understanding of the reconstruction behavior and the achievement of selective dehydrogenation will provide some hints for electrochemical synthesis.

18.
Sci Rep ; 14(1): 10206, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702334

ABSTRACT

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Subject(s)
Altitude , Hypoxia , Leptin , Signal Transduction , Leptin/metabolism , Leptin/blood , Animals , Rats , Male , Hypoxia/metabolism , Hypoxia/physiopathology , Humans , Altitude Sickness/metabolism , Altitude Sickness/physiopathology , Myocardium/metabolism , Myocardium/pathology , Adult , Heart/physiopathology
19.
Plant Physiol Biochem ; 210: 108656, 2024 May.
Article in English | MEDLINE | ID: mdl-38685151

ABSTRACT

Squamosa Promoter Binding Protein-Like (SPL) plays a crucial role in regulating plant development and combating stress, yet its mechanism in regulating resistance to Cd toxicity remains unclear. In this study, we cloned a nuclear-localized transcription factor, NtSPL4a, from the tobacco cultivar TN90. Transient co-expression results showed that miR156 significantly reduced the expression of NtSPL4a by binding to the 3'-UTR of its transcript. We obtained transgenic tobacco overexpressing NtSPL4a (including the 3'-UTR) and NtSPL4aΔ (lacking the 3'-UTR) through Agrobacterium-mediated genetic transformation. Compared to the wild type (WT), overexpression of NtSPL4a/NtSPL4aΔ shortened the flowering time and exhibited a more developed root system. The transgenic tobacco showed significantly reduced Cd content, being 85.1% (OE-NtSPL4a) and 46.7% (OE-NtSPL4aΔ) of WT, respectively. Moreover, the upregulation of NtSPL4a affected the mineral nutrient homeostasis in transgenic tobacco. Additionally, overexpression of NtSPL4a/NtSPL4aΔ effectively alleviated leaf chlorosis and oxidative stress induced by Cd toxicity. One possible reason is that the overexpression of NtSPL4a/NtSPL4aΔ can effectively promote the accumulation of non-enzymatic antioxidants. A comparative transcriptomic analysis was performed between transgenic tobacco and WT to further unravel the global impacts brought by NtSPL4a. The tobacco overexpressing NtSPL4a had 183 differentially expressed genes (77 upregulated, 106 downregulated), while the tobacco overexpressing NtSPL4aΔ had 594 differentially expressed genes (244 upregulated, 350 downregulated) compared to WT. These differentially expressed genes mainly included transcription factors, metal transport proteins, flavonoid biosynthesis pathway genes, and plant stress-related genes. Our study provides new insights into the role of the transcript factor SPL in regulating Cd tolerance.


Subject(s)
Cadmium , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects , Cadmium/toxicity , Cadmium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Environ Toxicol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563506

ABSTRACT

Excessive exposure to manganese (Mn) through drinking water and food during pregnancy significantly heightens the likelihood of neurodevelopmental damage in offspring. Multiple studies have indicated that melatonin (Mel) may help to relieve neurodevelopmental disorders caused by Mn, but potential mechanisms underlying this effect require further exploration. Here, we utilized primary neural stem cells (NSCs) as a model to elucidate the molecular mechanism underlying the protective function of Mel on Mn-induced cell proliferation dysfunction and cycle arrest. Our results showed that Mn disrupted the cell cycle in NSCs by suppressing positive regulatory proteins (CDK2, Cyclin A, Cyclin D1, and E2F1) and enhancing negative ones (p27KIP1 and p57KIP2), leading to cell proliferation dysfunction. Mel inhibited the Mn-dependent changes to these proteins and the cell cycle through nuclear receptor-related protein 1 (Nurr1), thus alleviating the proliferation dysfunction. Knockdown of Nurr1 using lentivirus-expressed shRNA in NSCs resulted in a diminished protective effect of Mel. We concluded that Mel mitigated Mn-induced proliferation dysfunction and cycle arrest in NSCs through Nurr1.

SELECTION OF CITATIONS
SEARCH DETAIL
...