Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(15): 10753-10766, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578841

ABSTRACT

Proteolysis targeting chimera (PROTAC) technology is an innovative strategy for cancer therapy, which, however, suffers from poor targeting delivery and limited capability for protein of interest (POI) degradation. Here, we report a strategy for the in situ formulation of antineoplastic Supra-PROTACs via intracellular sulfatase-responsive assembly of peptides. Coassembling a sulfated peptide with two ligands binding to ubiquitin VHL and Bcl-xL leads to the formation of a pro-Supra-PROTAC, in which the ratio of the two ligands is rationally optimized based on their protein binding affinity. The resulting pro-Supra-PROTAC precisely undergoes enzyme-responsive assembly into nanofibrous Supra-PROTACs in cancer cells overexpressing sulfatase. Mechanistic studies reveal that the pro-Supra-PROTACs selectively cause apparent cytotoxicity to cancer cells through the degradation of Bcl-xL and the activation of caspase-dependent apoptosis, during which the rationally optimized ligand ratio improves the bioactivity for POI degradation and cell death. In vivo studies show that in situ formulation enhanced the tumor accumulation and retention of the pro-Supra-PROTACs, as well as the capability for inhibiting tumor growth with excellent biosafety when coadministrating with chemodrugs. Our findings provide a new approach for enzyme-regulated assembly of peptides in living cells and the development of PROTACs with high targeting delivering and POI degradation efficiency.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Proteolysis Targeting Chimera , Antineoplastic Agents/pharmacology , Sulfatases , Proteolysis , Peptides , Ubiquitin-Protein Ligases
2.
J Am Chem Soc ; 146(1): 330-341, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38113388

ABSTRACT

Implementing dissipative assembly in living systems is meaningful for creation of living materials or even artificial life. However, intracellular dissipative assembly remains scarce and is significantly impeded by the challenges lying in precisely operating chemical reaction cycles under complex physiological conditions. Here, we develop organelle-mediated dissipative self-assembly of peptides in living cells fueled by GSH, via the design of a mitochondrion-targeting and redox-responsive hexapeptide. While the hexapeptide undergoes efficient redox-responsive self-assembly, the addition of GSH into the peptide solution in the presence of mitochondrion-biomimetic liposomes containing hydrogen peroxide allows for transient assembly of peptides. Internalization of the peptide by LPS-stimulated macrophages leads to the self-assembly of the peptide driven by GSH reduction and the association of the peptide assemblies with mitochondria. The association facilitates reversible oxidation of the reduced peptide by mitochondrion-residing ROS and thereby dissociates the peptide from mitochondria to re-enter the cytoplasm for GSH reduction. The metastable peptide-mitochondrion complexes prevent the thermodynamically equilibrated self-assembly, thus establishing dissipative assembly of peptides in stimulated macrophages. The entire dissipative self-assembling process allows for elimination of elevated ROS and decrease of pro-inflammatory cytokine expression. Creating dissipative self-assembling systems assisted by internal structures provides new avenues for the development of living materials or medical agents in the future.


Subject(s)
Mitochondria , Peptides , Reactive Oxygen Species , Peptides/chemistry
3.
Acta Biomater ; 175: 250-261, 2024 02.
Article in English | MEDLINE | ID: mdl-38122884

ABSTRACT

Suicide gene therapy is a promising therapeutic model for ovarian cancer (OC), while suffering from poor gene delivery and limited therapeutic efficacy. To address this concern, here we reported the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel (PTX). Connecting a lipid-like amphiphile and a hydrophilic arginine segment through disulfide bonds led to the enantiomeric peptides. The enantiomeric peptide assemblies are able to simultaneously uptake plasmid DNA (pDNA) and PTX based on electrostatic and hydrophobic interactions. The resulting co-assemblies underwent GSH-responsive disulfide cleavage and thereby promoting their assembly from nanoparticles to nanofibers, leading to the co-release of pDNA and PTX. Cellular and animal studies confirmed the co-delivery of pDNA and PTX into OC cells and the cell apoptosis by the enantiomeric peptides. In addition, in vitro and in vivo experiments supported the advanced uptake and cytotoxicity for L-type peptide vehicles by OC cells, and their great potential for OC-imaging, growth-inhibition and apoptosis-induction compared to D-counterpart. Our results demonstrate that the GSH-responsive morphology-transformable chiral peptide assemblies accurately and simultaneously release suicide genes and chemodrugs at tumor sites, thus providing a new strategy for the development of delivering vehicles for suicide gene and establishment of new therapeutic models for ovarian cancer. STATEMENT OF SIGNIFICANCE: Appropriate delivery carriers are essential for the clinical translation of cancer gene therapy, including the emerging suicide gene therapy. By combining the advantages of morphological transformable vehicles with the chirality peptides towards their bioactivity, we developed the GSH-responsive morphology-transformable enantiomeric peptide assemblies as delivering vehicles for suicide genes and co-delivery of paclitaxel. The GSH-responsive assembly of the enantiomeric peptides allows for precise release of plasmid DNA and paclitaxel in cancer cells, and promotes the formation of nanofibrils that facilitate gene entering nuclei for transfection. The enantiomeric peptide-based vehicles show the chirality-dependent capability for inducing cell apoptosis and inhibiting tumor growth. Our findings demonstrate a new strategy for developing therapeutic models for ovarian cancer.


Subject(s)
Nanoparticles , Ovarian Neoplasms , Animals , Humans , Female , Paclitaxel/chemistry , Genetic Therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Nanoparticles/chemistry , Peptides/pharmacology , Peptides/chemistry , DNA/genetics , Disulfides , Drug Delivery Systems/methods , Cell Line, Tumor
4.
Theranostics ; 12(10): 4818-4833, 2022.
Article in English | MEDLINE | ID: mdl-35832082

ABSTRACT

Background: Dental caries is the most prevalent bacterial biofilm-induced disease. Current clinical prevention and treatment agents often suffer from adverse effects on oral microbiota diversity and normal tissues, predominately arising from the poor biofilm-targeting property of the agents. Methods: To address this concern, we herein report dual-sensitive antibacterial peptide nanoparticles pHly-1 NPs upon acid and lipid-binding for treatment of dental caries. Amino acid substitutions were performed to design the peptide pHly-1. The potential, morphology and secondary structure of pHly-1 were characterized to elucidate the mechanisms of its pH and lipid sensitivity. Bacterial membrane integrity assay and RNA-seq were applied to uncover the antimicrobial mechanism of peptides under acidic condition. The in vitro and ex vivo antibiofilm assays were used to determine the antibiofilm performance of pHly-1 NPs. We also carried out the in vivo anti-caries treatment by pHly-1 NPs on dental caries animal model. Oral microbiome and histopathological analyses were performed to assess the in vivo safety of pHly-1 NPs. Results: The pHly-1 peptide underwent the coil-helix conformational transition upon binding to bacterial membranes in the acidic cariogenic biofilm microenvironment, thereby killing cariogenic bacteria. Under normal physiological conditions, pHly-1 adopted a ß-sheet conformation and formed nanofibers, resulting in negligible cytotoxicity towards oral microbes. However, in acidic solution, pHly-1 NPs displayed reliable antibacterial activity against Streptococcus mutans, including standard and clinically isolated strains, mainly via cell membrane disruption, and also suppressed in vitro and human-derived ex vivo biofilm development. Compared to the clinical agent chlorhexidine, in vivo topical treatment with pHly-1 NPs showed an advanced effect on inhibiting rat dental caries development without adverse effects on oral microbiota diversity and normal oral or gastric tissues. Conclusion: Our results demonstrated the high efficacy of dual-sensitive antimicrobial peptides for the selective damage of bacterial biofilms, providing an efficient strategy for preventing and treating dental caries.


Subject(s)
Dental Caries , Nanoparticles , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms , Cariostatic Agents/pharmacology , Dental Caries/drug therapy , Dental Caries/prevention & control , Humans , Lipids , Nanoparticles/chemistry , Peptides/pharmacology , Rats
5.
Toxins (Basel) ; 13(12)2021 12 04.
Article in English | MEDLINE | ID: mdl-34941705

ABSTRACT

Spider venom is a valuable resource for the development of novel anticancer drugs. In this study, we focused on novel linear amphipathic α-helical anticancer peptide LVTX-9, which was derived from the cDNA library of the venom gland of the spider Lycosa vittata. The cytotoxicity of LVTX-9 against murine melanoma cells in the range of 1.56-200 µM was tested and found to be significantly lower than those of most anticancer peptides reported. Its IC50 was determined to be 59.2 ± 19.8 µM in a serum or 76.3 ± 12.7 µM in serum-free medium. Fatty acid modification is a promising strategy for improving peptide performance. Therefore, to enhance the cytotoxic activity of LVTX-9, fatty acid modification of this peptide was performed, and five different carbon chain length lipopeptides named LVTX-9-C12-C20 were produced. Among them, the lipopeptide LVTX-9-C18 showed the highest cytotoxic activity in relation to B16-F10 cells, whether in a serum or serum-free medium. Most importantly, the cytotoxic activity of LVTX-9-C18 was improved by about 12.9 times in a serum medium or 19.3 times in a serum-free medium compared to that of LVTX-9. Subsequently, assays including scanning electron microscopy, trypan blue staining, lactate dehydrogenase leakage assay, and hemolytic activity could indicate that the potential direct cell membrane disruption is the main mechanism of LVTX-9-C18 to induce cancer cell death. Furthermore, the LVTX-9-C18 also showed strong cytotoxicity in relation to 3D B16-F10 spheroids, which indicates it might be a promising lead for developing anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Lipopeptides/pharmacology , Melanoma/drug therapy , Animals , Antineoplastic Agents/chemistry , Cell Line , Cell Line, Tumor , Cell Membrane/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Fatty Acids/chemistry , Humans , Lipopeptides/chemistry , Mice , Spider Venoms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...