Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Comput Biol Med ; 176: 108597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763069

ABSTRACT

BACKGROUND: Recessive GJB2 variants, the most common genetic cause of hearing loss, may contribute to progressive sensorineural hearing loss (SNHL). The aim of this study is to build a realistic predictive model for GJB2-related SNHL using machine learning to enable personalized medical planning for timely intervention. METHOD: Patients with SNHL with confirmed biallelic GJB2 variants in a nationwide cohort between 2005 and 2022 were included. Different data preprocessing protocols and computational algorithms were combined to construct a prediction model. We randomly divided the dataset into training, validation, and test sets at a ratio of 72:8:20, and repeated this process ten times to obtain an average result. The performance of the models was evaluated using the mean absolute error (MAE), which refers to the discrepancy between the predicted and actual hearing thresholds. RESULTS: We enrolled 449 patients with 2184 audiograms available for deep learning analysis. SNHL progression was identified in all models and was independent of age, sex, and genotype. The average hearing progression rate was 0.61 dB HL per year. The best MAE for linear regression, multilayer perceptron, long short-term memory, and attention model were 4.42, 4.38, 4.34, and 4.76 dB HL, respectively. The long short-term memory model performed best with an average MAE of 4.34 dB HL and acceptable accuracy for up to 4 years. CONCLUSIONS: We have developed a prognostic model that uses machine learning to approximate realistic hearing progression in GJB2-related SNHL, allowing for the design of individualized medical plans, such as recommending the optimal follow-up interval for this population.


Subject(s)
Connexin 26 , Hearing Loss, Sensorineural , Machine Learning , Humans , Connexin 26/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Female , Male , Adult , Child , Adolescent , Middle Aged , Child, Preschool
2.
Clin Exp Ophthalmol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757252

ABSTRACT

BACKGROUND: To identify genotypes associated with neovascular age-related macular degeneration (nAMD) and investigate the associations between genotype variations and anti-vascular endothelial growth factor (VEGF) treatment response. METHODS: This observational, retrospective, case series study enrolled patients diagnosed with nAMD who received anti-VEGF treatment in National Taiwan University Hospital with at least one-year follow-up between 2012 and 2020. A genome-wide association study (GWAS) was conducted on enrolled patients and controls. Correlations between the genotypes identified from GWAS and the treatment response of functional/anatomical biomarkers, including visual acuity (VA), presence of intraretinal or subretinal fluid (SRF), serous or fibrovascular pigmented epithelium detachment (PED), and disruption of the ellipsoid zone (EZ), were analysed. RESULTS: In total, 182 patients with nAMD and 1748 controls were enrolled. GWAS revealed 16 single nucleotide polymorphisms (SNPs) as risk loci for nAMD, including seven loci in CFH and ARMS2/HTRA1 and nine novel loci, including rs117517872 and rs79835234(COPB2-DT), rs7525578(RAP1A), rs2123738(LOC105376755), rs1374879(CNTN3), rs3812692(SAR1A), rs117501587(PRKCA), rs9965945(CNDP1), and rs189769231(MATK). Our study revealed rs800292(CFH), rs11200638(HTRA1), and rs2123738(LOC105376755) correlated with poor treatment response in VA (P = 0.005), SRF (P = 0.044), and fibrovascular PED (P = 0.007), respectively. Rs9965945(CNDP1) was correlated with poor response in disruption of EZ (P = 0.046) and serous PED (P = 0.049). CONCLUSIONS: Among the 16 SNPs found in the GWAS, four loci-CFH, ARMS2/HTRA1, and two novel loci-were correlated with the susceptibility of nAMD and anatomical/functional responses after anti-VEGF treatment.

3.
Invest Ophthalmol Vis Sci ; 65(5): 22, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38743414

ABSTRACT

Purpose: To describe the clinical, electrophysiological and genetic spectrum of inherited retinal diseases associated with variants in the PRPH2 gene. Methods: A total of 241 patients from 168 families across 15 sites in 9 countries with pathogenic or likely pathogenic variants in PRPH2 were included. Records were reviewed for age at symptom onset, visual acuity, full-field ERG, fundus colour photography, fundus autofluorescence (FAF), and SD-OCT. Images were graded into six phenotypes. Statistical analyses were performed to determine genotype-phenotype correlations. Results: The median age at symptom onset was 40 years (range, 4-78 years). FAF phenotypes included normal (5%), butterfly pattern dystrophy, or vitelliform macular dystrophy (11%), central areolar choroidal dystrophy (28%), pseudo-Stargardt pattern dystrophy (41%), and retinitis pigmentosa (25%). Symptom onset was earlier in retinitis pigmentosa as compared with pseudo-Stargardt pattern dystrophy (34 vs 44 years; P = 0.004). The median visual acuity was 0.18 logMAR (interquartile range, 0-0.54 logMAR) and 0.18 logMAR (interquartile range 0-0.42 logMAR) in the right and left eyes, respectively. ERG showed a significantly reduced amplitude across all components (P < 0.001) and a peak time delay in the light-adapted 30-Hz flicker and single-flash b-wave (P < 0.001). Twenty-two variants were novel. The central areolar choroidal dystrophy phenotype was associated with 13 missense variants. The remaining variants showed marked phenotypic variability. Conclusions: We described six distinct FAF phenotypes associated with variants in the PRPH2 gene. One FAF phenotype may have multiple ERG phenotypes, demonstrating a discordance between structure and function. Given the vast spectrum of PRPH2 disease our findings are useful for future clinical trials.


Subject(s)
Electroretinography , Peripherins , Phenotype , Retinal Dystrophies , Visual Acuity , Humans , Peripherins/genetics , Middle Aged , Adult , Male , Female , Adolescent , Retinal Dystrophies/genetics , Retinal Dystrophies/physiopathology , Retinal Dystrophies/diagnosis , Aged , Visual Acuity/physiology , Child , Young Adult , Child, Preschool , Tomography, Optical Coherence , Mutation , Fluorescein Angiography , Genetic Association Studies , Retrospective Studies , DNA Mutational Analysis , DNA/genetics , Pedigree
4.
Comput Struct Biotechnol J ; 23: 1562-1571, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38650588

ABSTRACT

Human leukocyte antigen (HLA) genes play pivotal roles in numerous immunological applications. Given the immense number of polymorphisms, achieving accurate high-throughput HLA typing remains challenging. This study aimed to harness the human pan-genome reference consortium (HPRC) resources as a potential benchmark for HLA reference materials. We meticulously annotated specific four field-resolution alleles for 11 HLA genes (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4 and -DRB5) from 44 high-quality HPRC personal genome assemblies. For sequencing, we crafted HLA-specific probes and conducted capture-based targeted sequencing of the genomic DNA of the HPRC cohort, ensuring focused and comprehensive coverage of the HLA region of interest. We used publicly available short-read whole-genome sequencing (WGS) data from identical samples to offer a comparative perspective. To decipher the vast amount of sequencing data, we employed seven distinct software tools: OptiType, HLA-VBseq, HISAT genotype, SpecHLA, T1K, QzType, and DRAGEN. Each tool offers unique capabilities and algorithms for HLA genotyping, allowing comprehensive analysis and validation of the results. We then compared these results with benchmarks derived from personal genome assemblies. Our findings present a comprehensive four-field-resolution HLA allele annotation for 44 HPRC samples. Significantly, our innovative targeted next-generation sequencing (NGS) approach for HLA genes showed superior accuracy compared with conventional short-read WGS. An integrated analysis involving QzType, T1K, and DRAGEN was developed, achieving 100% accuracy for all 11 HLA genes. In conclusion, our study highlighted the combination of targeted short-read sequencing and astute computational analysis as a robust approach for HLA genotyping. Furthermore, the HPRC cohort has emerged as a valuable assembly-based reference in this realm.

5.
Nat Commun ; 15(1): 3562, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670966

ABSTRACT

The diagnosis of inherited retinal degeneration (IRD) is challenging owing to its phenotypic and genotypic complexity. Clinical information is important before a genetic diagnosis is made. Metabolomics studies the entire picture of bioproducts, which are determined using genetic codes and biological reactions. We demonstrated that the common diagnoses of IRD, including retinitis pigmentosa (RP), cone-rod dystrophy (CRD), Stargardt disease (STGD), and Bietti's crystalline dystrophy (BCD), could be differentiated based on their metabolite heatmaps. Hundreds of metabolites were identified in the volcano plot compared with that of the control group in every IRD except BCD, considered as potential diagnosing markers. The phenotypes of CRD and STGD overlapped but could be differentiated by their metabolomic features with the assistance of a machine learning model with 100% accuracy. Moreover, EYS-, USH2A-associated, and other RP, sharing considerable similar characteristics in clinical findings, could also be diagnosed using the machine learning model with 85.7% accuracy. Further study would be needed to validate the results in an external dataset. By incorporating mass spectrometry and machine learning, a metabolomics-based diagnostic workflow for the clinical and molecular diagnoses of IRD was proposed in our study.


Subject(s)
Machine Learning , Metabolomics , Retinal Degeneration , Retinitis Pigmentosa , Stargardt Disease , Humans , Metabolomics/methods , Diagnosis, Differential , Retinal Degeneration/diagnosis , Retinal Degeneration/blood , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Male , Female , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/blood , Retinitis Pigmentosa/metabolism , Stargardt Disease/genetics , Adult , Middle Aged , Adolescent , Young Adult , Biomarkers/blood , Metabolome , Child , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/blood , Cone-Rod Dystrophies/metabolism , Mass Spectrometry , Macular Degeneration/blood , Macular Degeneration/diagnosis , Macular Degeneration/genetics
6.
Comput Struct Biotechnol J ; 21: 5698-5711, 2023.
Article in English | MEDLINE | ID: mdl-38074473

ABSTRACT

Variants in the gap junction beta-2 (GJB2) gene are the most common cause of hereditary hearing impairment. However, how GJB2 variants lead to local physicochemical and structural changes in the hexameric ion channels of connexin 26 (Cx26), resulting in hearing impairment, remains elusive. In this study, using molecular dynamics (MD) simulations, we showed that detached inner-wall N-terminal "plugs" aggregated to reduce the channel ion flow in a highly prevalent V37I variant in humans. To examine the predictive ability of the computational platform, an artificial mutant, V37M, of which the effect was previously unknown in hearing loss, was created. Microsecond simulations showed that homo-hexameric V37M Cx26 hemichannels had an abnormal affinity between the inner edge and N-termini to block the narrower side of the cone-shaped Cx26, while the most stable hetero-hexameric channels did not. From the perspective of the conformational energetics of WT and variant Cx26 hexamers, we propose that unaffected carriers could result from a conformational predominance of the WT and pore-shrinkage-incapable hetero-hexamers, while mice with homozygous variants can only harbor an unstable and dysfunctional N-termini-blocking V37M homo-hexamer. Consistent with these predictions, homozygous V37M transgenic mice exhibited apparent hearing loss, but not their heterozygous counterparts, indicating a recessive inheritance mode. Reduced channel conductivity was found in Gjb2V37M/V37M outer sulcus and Claudius cells but not in Gjb2WT/WT cells. We view that the current computational platform could serve as an assessment tool for the pathogenesis and inheritance of GJB2-related hearing impairments and other diseases caused by connexin dysfunction.

7.
J Adv Res ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38159844

ABSTRACT

INTRODUCTION: The population of Taiwan has a long history of ethno-cultural evolution. The Taiwanese population was isolated from other large populations such as the European, Han Chinese, and Japanese population. The Taiwan Biobank (TWB) project has built a nationwide database, particularly for personal whole-genome sequence (WGS) to facilitate basic and clinical collaboration nationally and internationally, making it one of the most valuable public datasets of the East Asian population. OBJECTIVES: This study provides comprehensive medical genomic findings from TWB WGS data, for better characterization of disease susceptibility and the choice of ideal treatment regimens in Taiwanese population. METHODS: We reanalyzed 1496 WGS using a PrecisionFDA Truth challenge winner method Sentieon DNAscope. Single nucleotide variants (SNV) and small insertions/deletions (INDEL) were benchmarked. We also analyzed pharmacogenomic (PGx) drug-associated alleles, and copy number variants (CNV). Multiple practicing clinicians reviewed and curated the clinically significant variants. Variant annotations can be browsed at TaiwanGenomes (https://genomes.tw). RESULTS: We found that each participant had an average of 6,870.7 globally novel variants and 75.3% (831/1103) of the participants harbored at least one PharmGKB-selected high evidence level human leukocyte antigen (HLA) risk allele. 54 PharmGKB-reported high-level instances of evidence of Cytochrome P450 variant-drug pairs, with a population frequency of over 13.2%. We also identified 23 variants in the ACMG secondary finding V3 gene list from 25 participants, suggesting that 1.67% (25/1496) of the population is harboring at least one medical actionable variant. Our carrier status analyses suggest that one in 25 couples (3.94%) would risk having offspring with at least one pathogenic variant, which is in line with rates found in Japan and Singapore. For pathogenic CNV, we detected 6.88% and 2.02% carrier rates for alpha thalassemia and spinal muscular atrophy, respectively. CONCLUSION: Our study highlights the overall medical insights of a complete Taiwanese genomic profile.

8.
Front Endocrinol (Lausanne) ; 14: 1283907, 2023.
Article in English | MEDLINE | ID: mdl-38033998

ABSTRACT

Objective: Congenital hyperinsulinism (CHI) is a group of clinically and genetically heterogeneous disorders characterized by dysregulated insulin secretion. The aim of the study was to elucidate genetic etiologies of Taiwanese children with the most severe diazoxide-unresponsive CHI and analyze their genotype-phenotype correlations. Methods: We combined Sanger with whole exome sequencing (WES) to analyze CHI-related genes. The allele frequency of the most common variant was estimated by single-nucleotide polymorphism haplotype analysis. The functional effects of the ATP-sensitive potassium (KATP) channel variants were assessed using patch clamp recording and Western blot. Results: Nine of 13 (69%) patients with ten different pathogenic variants (7 in ABCC8, 2 in KCNJ11 and 1 in GCK) were identified by the combined sequencing. The variant ABCC8 p.T1042QfsX75 identified in three probands was located in a specific haplotype. Functional study revealed the human SUR1 (hSUR1)-L366F KATP channels failed to respond to intracellular MgADP and diazoxide while hSUR1-R797Q and hSUR1-R1393C KATP channels were defective in trafficking. One patient had a de novo dominant mutation in the GCK gene (p.I211F), and WES revealed mosaicism of this variant from another patient. Conclusion: Pathogenic variants in KATP channels are the most common underlying cause of diazoxide-unresponsive CHI in the Taiwanese cohort. The p.T1042QfsX75 variant in the ABCC8 gene is highly suggestive of a founder effect. The I211F mutation in the GCK gene and three rare SUR1 variants associated with defective gating (p.L366F) or traffic (p.R797Q and p.R1393C) KATP channels are also associated with the diazoxide-unresponsive phenotype.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Humans , Child , Diazoxide/therapeutic use , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Genetic Association Studies , Adenosine Triphosphate
9.
Eur Thyroid J ; 12(6)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37878416

ABSTRACT

Purpose: Autoimmune polyendocrine syndrome (APS) is a rare immune-endocrinopathy characterized by the failure of at least two endocrine organs. Clinical characteristics have mainly been described in the Western population. This study comprehensively analyzed the demographic and clinical manifestations of APS II and APS III in Taiwan. Methods: Patients aged ≥20 years with a diagnosis of APS II or APS III in ten hospitals between 2001 and 2021 were enrolled. The clinical and serological characteristics of the patients were retrospectively reviewed. Results: Among the 187 enrolled patients (45 men and 142 women); only seven (3.7%) had APS II, while the others had APS III. Fifty-five patients developed hyperthyroidism and 44 patients developed hypothyroidism. Men were diagnosed with APS at a younger age than women (16.8 vs 27.8 years old, P = 0.007). Most patients were initially diagnosed with type 1 diabetes mellitus. There was a positive correlation between age at diagnosis and the likelihood of developing thyroid dysfunction. For every year older patients were diagnosed with APS III, the risk of developing hyperthyroidism increased by 3.6% (P = 0.002), and the risk of developing hypothyroidism increased by 3.7% (P = 0.035). Positive anti-parietal cell antibodies (APCA) were associated with a higher risk of anemia in patients with APS III (P < 0.001). Conclusion: This study provides the most comprehensive analysis of APS II and APS III in Asia. The percentage of patients with APS II was significantly lower than in the Western population. A second autoimmune endocrinopathy may develop several years after the first one. APCA examination is valuable when evaluating anemia in patients with APS.


Subject(s)
Anemia , Hyperthyroidism , Hypothyroidism , Polyendocrinopathies, Autoimmune , Male , Humans , Female , Adult , Polyendocrinopathies, Autoimmune/complications , Taiwan/epidemiology , Retrospective Studies , Syndrome , Hyperthyroidism/complications , Hypothyroidism/complications , Anemia/complications
10.
J Mol Diagn ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37683890

ABSTRACT

Recessive variants in GJB2 are the most important genetic cause of sensorineural hearing impairment (SNHI) worldwide. Phenotypes vary significantly in GJB2-related SNHI, even in patients with identical variants. For instance, patients homozygous for the GJB2 p.V37I variant, which is highly prevalent in the Asian populations, usually present with mild-to-moderate SNHI; yet severe-to-profound SNHI is occasionally observed in approximately 10% of p.V37I homozygotes. To investigate the genomic underpinnings of the phenotypic variability, we performed next-generation sequencing of GJB2 and other deafness genes in 63 p.V37I homozygotes with extreme phenotypic severities. We identified additional pathogenic variants of other deafness genes in 5 of the 35 patients with severe-to-profound SNHI. Furthermore, we conducted case-control association analyses for 30 unrelated p.V37I homozygotes with severe-to-profound SNHI against 28 p.V37I homozygotes with mild-to-moderate SNHI, and 120 population controls from the Taiwan Biobank. We found that the severe-to-profound group had a higher frequency of the crystallin lambda 1 (CRYL1) variant (rs14236), located upstream of GJB2, than the mild-to-moderate and Taiwan Biobank groups. Our results demonstrated that pathogenic variants in other deafness genes and a possible modifier, the CRYL1 rs14236 variant, may contribute to phenotypic variability in GJB2-realted SNHI, highlighting the importance of comprehensive genomic surveys to delineate the genotype-phenotype correlations.

11.
J Chin Med Assoc ; 86(9): 826-834, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37466683

ABSTRACT

BACKGROUND: Thionamide-induced agranulocytosis (TiA) is a rare adverse event with a reported incidence of approximately 0.1% to 1.75%. Prompt recognition of TiA is critical to reduce the mortality rate. However, the differential diagnosis between cases of TiA and non-TiA neutropenia can be challenging due to the potential simultaneous involvement of other causes of neutropenia, such as concomitant chemotherapy, liver dysfunction, or infection. The aim of the present study was to investigate the possible factors associated with the development of TiA. METHODS: This was a retrospective cohort study of patients treated with antithyroid drugs (ATDs) in Taipei Veterans General Hospital, Taipei, Taiwan, from 2006 to 2018. Patients who developed a neutropenic event during treatment with ATDs were identified from their medical records. The diagnosis of TiA was based on the following: (1) development of neutropenia during treatment or within 7 days after previous exposure to the same ATDs; (2) complete resolution of neutropenia within 1 month after discontinuation of the culprit drug with an absolute neutrophil count (ANC) >1500/µL; and (3) exclusion of other causes of neutropenia. The incidence and risk factors of TiA were analyzed and compared with those of non-TiA neutropenia. RESULTS: Among 6644 patients treated with ATDs, 66 (mean age: 53 ± 15 years; 16.2% men) developed a neutropenic event and 20 were diagnosed with TiA (incidence: 0.3%). In the univariate analysis, compared with non-TiA neutropenia, TiA was associated with a lower Charlson Comorbidity Index, shorter treatment duration, lower cumulative ATD dosage, higher ATD dosage, higher ANC, and higher levels of free T4 at the time of the neutropenic event. In the multivariate logistic regression analysis, after adjusting for age, gender and the time to neutropenia, the cumulative ATD dose to neutropenia and ATD dosage at the time of the neutropenic event, Charlson Comorbidity Index, free T4 levels (odds ratio [OR], 4.44; 95% CI, 1.48-13.25), and ANC (OR, 1.00; 95% CI, 1.00-1.01) remained independently associated with TiA. CONCLUSION: Patients with TiA were more likely to have higher levels of free T4 and ANC at the time of the neutropenic event vs those with non-TiA neutropenia.


Subject(s)
Antithyroid Agents , Neutropenia , Male , Humans , Adult , Middle Aged , Aged , Female , Antithyroid Agents/adverse effects , Retrospective Studies , Neutropenia/chemically induced , Neutrophils , Hospitals
12.
Gene ; 881: 147643, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37453721

ABSTRACT

Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.


Subject(s)
Hirschsprung Disease , Hydrocephalus , Neural Cell Adhesion Molecule L1 , Animals , Female , Male , Mice , Hirschsprung Disease/genetics , Hydrocephalus/genetics , Intestines , Neural Cell Adhesion Molecule L1/genetics , Protein Isoforms
13.
J Clin Endocrinol Metab ; 108(12): e1532-e1541, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37390813

ABSTRACT

CONTEXT: Recent studies suggest that the clinical characteristics and biological behavior of pituitary tumors (PITs) in patients with multiple endocrine neoplasia type 1 (MEN1) may not be as aggressive as previously reported. Increased imaging of the pituitary as recommended by screening guidelines identifies more tumors, potentially at an earlier stage. However, it is unknown if these tumors have different clinical characteristics in different MEN1 mutations. OBJECTIVE: To assess characteristics of patients with MEN1 with and without PITs, and compare among different MEN1 mutations. METHODS: Data of patients with MEN1 in a tertiary referral center from 2010 to 2023 were retrospectively analyzed. RESULTS: Forty-two patients with MEN1 were included. Twenty-four patients had PITs, 3 of which were invasive and managed with transsphenoidal surgery. One PIT enlarged during follow-up. Patients with PITs had a higher median age at MEN1 diagnosis than those without PITs. MEN1 mutations were identified in 57.1% of patients, including 5 novel mutations. In patients with PITs, those with MEN1 mutations (mutation+/PIT+ group) had more additional MEN1-associated tumors than those without (mutation-/PIT+ group). The mutation+/PIT+ group had a higher incidence of adrenal tumors and a lower median age at initial manifestation of MEN1 than the mutation-/PIT+ group. The most common neuroendocrine neoplasm was nonfunctional in the mutation+/PIT+ group and insulin-secreting in the mutation-/PIT+ group. CONCLUSION: This is the first study comparing characteristics of patients with MEN1 with and without PITs harboring different mutations. Patients without MEN1 mutations tended to have less organ involvement and it might be reasonable for them to receive less intensive follow-up.


Subject(s)
Multiple Endocrine Neoplasia Type 1 , Pituitary Neoplasms , Humans , Multiple Endocrine Neoplasia Type 1/pathology , Pituitary Neoplasms/epidemiology , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Retrospective Studies , Mutation , Pituitary Gland/pathology
14.
Otolaryngol Head Neck Surg ; 169(5): 1299-1308, 2023 11.
Article in English | MEDLINE | ID: mdl-37125626

ABSTRACT

OBJECTIVE: Unilateral sensorineural hearing loss (USNHL) is a condition commonly encountered in otolaryngology clinics. However, its molecular pathogenesis remains unclear. This study aimed to investigate the genetic underpinnings of childhood USNHL and analyze the associated audiological features. STUDY DESIGN: Retrospective analysis of a prospectively recruited cohort. SETTING: Tertiary referral center. METHODS: We enrolled 38 children with USNHL between January 1, 2018, and December 31, 2021, and performed physical, audiological, imaging, and congenital cytomegalovirus (cCMV) examinations as well as genetic testing using next-generation sequencing (NGS) targeting 30 deafness genes. The audiological results were compared across different etiologies. RESULTS: Causative genetic variants were identified in 8 (21.1%) patients, including 5 with GJB2 variants, 2 with PAX3 variants, and 1 with the EDNRB variant. GJB2 variants were found to be associated with mild-to-moderate USNHL in various audiogram configurations, whereas PAX3 and EDNRB variants were associated with profound USNHL in flat audiogram configurations. In addition, whole-genome sequencing and extended NGS targeting 213 deafness genes were performed in 2 multiplex families compatible with autosomal recessive inheritance; yet no definite causative variants were identified. Cochlear nerve deficiency and cCMV infection were observed in 9 and 2, respectively, patients without definite genetic diagnoses. CONCLUSION: Genetic underpinnings can contribute to approximately 20% of childhood USNHL, and different genotypes are associated with various audiological features. These findings highlight the utility of genetic examinations in guiding the diagnosis, counseling, and treatment of USNHL in children.


Subject(s)
Cytomegalovirus Infections , Deafness , Hearing Loss, Sensorineural , Hearing Loss, Unilateral , Hearing Loss , Humans , Child , Retrospective Studies , Hearing Loss, Sensorineural/etiology , Hearing Loss/complications , Genetic Testing , Cytomegalovirus Infections/complications , Deafness/genetics , Hearing Loss, Unilateral/genetics
15.
Front Genet ; 14: 1172365, 2023.
Article in English | MEDLINE | ID: mdl-37234870

ABSTRACT

Identification of germline pathogenic variants in cancer patients is critical for treatment planning, genetic counseling, and health policymaking. However, previous estimates of the prevalence of germline etiology of pancreatic ductal adenocarcinoma (PDAC) were biased because they were based only on sequencing data of protein-coding regions of known PDAC candidate genes. To determine the percentage of patients with PDAC carrying germline pathogenic variants, we enrolled the inpatients from the digestive health clinics, hematology and oncology clinics, and surgical clinics of a single tertiary medical center in Taiwan for whole genome sequencing (WGS) analysis of genomic DNA. The virtual gene panel of 750 genes comprised PDAC candidate genes and those listed in the COSMIC Cancer Gene Census. The genetic variant types under investigation included single nucleotide substitutions, small indels, structural variants, and mobile element insertions (MEIs). In 8 of 24 (33.3%) patients with PDAC, we identified pathogenic/likely pathogenic variants, including single nucleotide substitutions and small indels in ATM, BRCA1, BRCA2, POLQ, SPINK1 and CASP8, as well as structural variants in CDC25C and USP44. We identified additional patients carrying variants that could potentially affect splicing. This cohort study demonstrates that an extensive analysis of the abundant information yielded by the WGS approach can uncover many pathogenic variants that could be missed by traditional panel-based or whole exome sequencing-based approaches. The percentage of patients with PDAC carrying germline variants might be much higher than previously expected.

16.
J Pediatr ; 258: 113408, 2023 07.
Article in English | MEDLINE | ID: mdl-37019333

ABSTRACT

OBJECTIVES: To determine how advanced genetic analysis methods may help in clinical diagnosis. STUDY DESIGN: We report a combined genetic diagnosis approach for patients with clinical suspicion of genetic liver diseases in a tertiary referral center, using tools either tier 1: Sanger sequencing on SLC2SA13, ATP8B1, ABCB11, ABCB4, and JAG1 genes, tier 2: panel-based next generation sequencing (NGS), or tier 3: whole-exome sequencing (WES) analysis. RESULTS: In a total of 374 patients undergoing genetic analysis, 175 patients received tier 1 Sanger sequencing based on phenotypic suspicion, and pathogenic variants were identified in 38 patients (21.7%). Tier 2 included 216 patients (39 of tier 1-negative patients) who received panel-based NGS, and pathogenic variants were identified in 60 (27.8%). In tier 3, 41 patients received WES analysis, and 20 (48.8%) obtained genetic diagnosis. Pathogenic variants were detected in 6 of 19 (31.6%) who tested negative in tier 2, and a greater detection rate in 14 of 22 (63.6%) patients with deteriorating/multiorgan disease receiving one-step WES (P = .041). The overall disease spectrum is comprised of 35 genetic defects; 90% of genes belong to the functional categories of small molecule metabolism, ciliopathy, bile duct development, and membrane transport. Only 13 (37%) genetic diseases were detected in more than 2 families. A hypothetical approach using a small panel-based NGS can serve as the first tier with diagnostic yield of 27.8% (98/352). CONCLUSIONS: NGS based genetic test using a combined panel-WES approach is efficient for the diagnosis of the highly diverse genetic liver diseases.


Subject(s)
Genetic Testing , Liver Diseases , Humans , Exome Sequencing , Liver Diseases/diagnosis , Liver Diseases/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation
17.
Genes (Basel) ; 14(4)2023 04 07.
Article in English | MEDLINE | ID: mdl-37107638

ABSTRACT

Hearing impairment is one of the most common sensory disorders in children, and targeted next-generation sequencing (NGS)-based genetic examinations can assist in its prognostication and management. In 2020, we developed a simplified 30-gene NGS panel from the original 214-gene NGS version based on Taiwanese genetic epidemiology data to increase the accessibility of NGS-based examinations. In this study, we evaluated the diagnostic performance of the 30-gene NGS panel and compared it with that of the original 214-gene NGS panel in patient subgroups with different clinical features. Data on the clinical features, genetic etiologies, audiological profiles, and outcomes were collected from 350 patients who underwent NGS-based genetic examinations for idiopathic bilateral sensorineural hearing impairment between 2020 and 2022. The overall diagnostic yield was 52%, with slight differences in genetic etiology between patients with different degrees of hearing impairment and ages of onset. No significant difference was found in the diagnostic yields between the two panels, regardless of clinical features, except for a lower detection rate of the 30-gene panel in the late-onset group. For patients with negative genetic results, where the causative variant is undetectable on current NGS-based methods, part of the negative results may be due to genes not covered by the panel or yet to be identified. In such cases, the hearing prognosis varies and may decline over time, necessitating appropriate follow-up and consultation. In conclusion, genetic etiologies can serve as references for refining targeted NGS panels with satisfactory diagnostic performance.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Child , Humans , Molecular Epidemiology , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics , Deafness/genetics , Hearing Loss/diagnosis , Hearing Loss/epidemiology , Hearing Loss/genetics , Genetic Testing/methods
18.
Parkinsonism Relat Disord ; 109: 105353, 2023 04.
Article in English | MEDLINE | ID: mdl-36863113

ABSTRACT

BACKGROUND: Mitochondrial membrane protein‒associated neurodegeneration (MPAN) is a rare genetic disease characterized by progressive neurodegeneration with brain iron accumulations combined with neuronal α-synuclein and tau aggregations. Mutations in C19orf12 have been associated with both autosomal recessive and autosomal dominant inheritance patterns of MPAN. METHODS: We present clinical features and functional evidence from a Taiwanese family with autosomal dominant MPAN caused by a novel heterozygous frameshift and nonsense mutation in C19orf12, c273_274 insA (p.P92Tfs*9). To verify the pathogenicity of the identified variant, we examined the mitochondrial function, morphology, protein aggregation, neuronal apoptosis, and RNA interactome in p.P92Tfs*9 mutant knock-in SH-SY5Y cells created with CRISPR-Cas9 technology. RESULTS: Clinically, the patients with the C19orf12 p.P92Tfs*9 mutation presented with generalized dystonia, retrocollis, cerebellar ataxia, and cognitive decline, starting in their mid-20s. The identified novel frameshift mutation is located in the evolutionarily conserved region of the last exon of C19orf12. In vitro studies revealed that the p.P92Tfs*9 variant is associated with impaired mitochondrial function, reduced ATP production, aberrant mitochondria interconnectivity and ultrastructure. Increased neuronal α-synuclein and tau aggregations, and apoptosis were observed under conditions of mitochondrial stress. Transcriptomic analysis revealed that the expression of genes in clusters related to mitochondrial fission, lipid metabolism, and iron homeostasis pathways was altered in the C19orf12 p.P92Tfs*9 mutant cells compared to control cells. CONCLUSION: Our findings provide clinical, genetic, and mechanistic insight revealing a novel heterozygous C19orf12 frameshift mutation to be a cause of autosomal dominant MPAN, further strengthening the importance of mitochondrial dysfunction in the pathogenesis of MPAN.


Subject(s)
Frameshift Mutation , Neuroblastoma , Humans , Frameshift Mutation/genetics , alpha-Synuclein/genetics , Pedigree , Mitochondrial Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Membrane Proteins/genetics , Iron/metabolism
19.
J Formos Med Assoc ; 122(7): 648-652, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36964102

ABSTRACT

Rotor syndrome is a rare, benign, inherited disorder that is commonly associated with mild hyperbilirubinemia. It is caused by bi-allelic pathological variants in both SLCO1B1 and SLCO1B3 genes, causing defective OATP1B1 and OATP1B3 in the sinusoidal membrane and interrupted bilirubin uptake of the hepatocytes. We report five Taiwanese pediatric and adult patients aged 5-32 years presenting with conjugated hyperbilirubinemia, and were found to have genetic variants of SLCO1B1 and SLCO1B3. Two also had history of prolonged neonatal jaundice. Genetic analysis using panel-based next generation sequencing revealed three patients with homozygous mutations c.1738C>T (p.R580∗) in SLCO1B1 and a transposon LINE-1 insertion in SLCO1B3, one patient with homozygous mutations for another haplotype, c.757C>T (p.R253∗) in SLCO1B1 and c.1747+1G>A in SLCO1B3. Another patient had heterozygous c.1738C>T (p.R580∗) in SLCO1B1 linked with a LINE-1 insertion in SLCO1B3, and heterozygous c.757C>T (p.R253∗) in SLCO1B1 linked with c.1747+1G>A in SLCO1B3. In conclusion, we present the first time of genetic diagnosis of Rotor syndrome in Taiwan. Advanced genetic testing has enhanced the diagnosis of rare diseases with mild symptoms.


Subject(s)
Hyperbilirubinemia, Hereditary , Organic Anion Transporters , Adult , Infant, Newborn , Humans , Child , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters/genetics , Liver-Specific Organic Anion Transporter 1/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Hyperbilirubinemia, Hereditary/genetics , Hyperbilirubinemia , Mutation
20.
Retina ; 43(2): e11-e12, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36695808
SELECTION OF CITATIONS
SEARCH DETAIL
...