Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(8): 107402, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37575187

ABSTRACT

A Wheeler graph represents a collection of strings in a way that is particularly easy to index and query. Such a graph is a practical choice for representing a graph-shaped pangenome, and it is the foundation for current graph-based pangenome indexes. However, there are no practical tools to visualize or to check graphs that may have the Wheeler properties. Here, we present Wheelie, an algorithm that combines a renaming heuristic with a permutation solver (Wheelie-PR) or a Satisfiability Modulo Theory (SMT) solver (Wheelie-SMT) to check whether a given graph has the Wheeler properties, a problem that is NP-complete in general. Wheelie can check a variety of random and real-world graphs in far less time than any algorithm proposed to date. It can check a graph with 1,000s of nodes in seconds. We implement these algorithms together with complementary visualization tools in the WGT toolkit, available as open source software at https://github.com/Kuanhao-Chao/Wheeler_Graph_Toolkit.

2.
Int J Mol Sci ; 23(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35328716

ABSTRACT

Morphologically tunable copper oxide-based nanomaterials on Cu wire have been synthesized through a one-step alkali-assisted surface oxidation process for non-enzymatic glucose sensing. Subsequently, copper oxide-based nanomaterials on Cu wire as a supporting matrix to deposit manganese oxide for the construction of heterostructured Mn-Cu bimetallic oxide architectures through spontaneous redox reaction in the KMnO4 solution for supercapacitors. Field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed that morphological and phase transformation from Cu(OH)2 to CuO occurred in copper oxide-based nanomaterials on Cu wire with different degrees of growth reaction. In non-enzymatic glucose sensing, morphologically tunable copper oxide-based nanomaterials owned the high tunability of electrocatalytically active sites and intrinsic catalytic activity to meet efficient glucose electrooxidation for obtaining promoted non-enzymatic glucose sensing performances (sensitivity of 2331 µA mM-1 cm-2 and the limit of detection of 0.02 mM). In the supercapacitor, heterostructured Mn-Cu bimetallic oxide-based nanomaterials delivered abundant redox-active sites and continuous conductive network to optimize the synergistic effect of Mn and Cu redox species for boosting the pseudo-capacitance performance (areal capacitance value of 79.4 mF cm-2 at 0.2 mA cm-2 current density and capacitance retention of 74.9% after 1000 cycles). It concluded that morphologically tunable copper oxide-based nanomaterials on Cu wire with/without deposition of manganese oxide could be good candidates for the future design of synergistic multifunctional materials in electrochemical techniques.


Subject(s)
Biosensing Techniques , Nanostructures , Copper/chemistry , Electrodes , Glucose/chemistry , Manganese Compounds , Oxides
3.
J Immunol ; 199(8): 2834-2844, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28904127

ABSTRACT

Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Dengue Virus/immunology , Dengue/therapy , Hemorrhage/prevention & control , Immunotherapy/methods , Viral Nonstructural Proteins/metabolism , Animals , Antibody-Dependent Cell Cytotoxicity , Autoantigens/immunology , Cells, Cultured , Cross Reactions , Dengue/complications , Dengue/immunology , Dengue Virus/genetics , Disease Models, Animal , Encephalitis Virus, Japanese/genetics , Epitopes/genetics , Hemorrhage/etiology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Knockout , Recombinant Proteins/immunology , STAT1 Transcription Factor/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
4.
Plant Cell ; 26(2): 602-18, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24532595

ABSTRACT

Transcriptome profiling has been used to identify genes expressed in pollen tubes elongating in vitro; however, little is known of the transcriptome of in vivo-grown pollen tubes due to the difficulty of collecting pollen that is elongating within the solid maternal gynoecium. Using a pollen-specific promoter (ProLAT52) to generate epitope-tagged polysomal-RNA complexes that could be affinity purified, we obtained mRNAs undergoing translation (the translatome) of in vivo-grown pollen tubes from self-pollinated gynoecia of Arabidopsis thaliana. Translatomes of pollen grains as well as in vivo- and in vitro-cultured pollen tubes were assayed by microarray analyses, revealing over 500 transcripts specifically enriched in in vivo-elongating pollen tubes. Functional analyses of several in vivo mutants (iv) of these pollination-enhanced transcripts revealed partial pollination/fertilization and seed formation defects in siliques (iv2, iv4, and iv6). Cytological observation confirmed the involvement of these genes in specialized processes including micropylar guidance (IV6 and IV4), pollen tube burst (IV2), and repulsion of multiple pollen tubes in embryo sac (IV2). In summary, the selective immunopurification of transcripts engaged with polysomes in pollen tubes within self-fertilized florets has identified a cohort of pollination-enriched transcripts that facilitated the identification of genes important in in vivo pollen tube biology.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression Profiling , Genes, Plant , Pollen Tube/physiology , Pollination/genetics , Protein Biosynthesis/genetics , Arabidopsis/ultrastructure , Crosses, Genetic , DNA, Bacterial/genetics , Gene Expression Regulation, Plant , Germination/genetics , Multigene Family , Mutagenesis, Insertional/genetics , Mutation/genetics , Plants, Genetically Modified , Pollen Tube/genetics , Pollen Tube/ultrastructure , Polyribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Self-Fertilization/genetics
5.
Plant J ; 71(2): 288-302, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22409537

ABSTRACT

Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice.


Subject(s)
Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , RNA Isoforms/genetics , Amino Acid Sequence , Flowers/cytology , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Molecular Sequence Data , Mutation , Onions/genetics , Onions/metabolism , Oryza/cytology , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Protein Structure, Tertiary , RNA Interference , RNA Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Fusion Proteins , Seedlings/cytology , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Seeds/cytology , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...