Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 174(Pt 1): 113519, 2023 12.
Article in English | MEDLINE | ID: mdl-37986421

ABSTRACT

The lack of research on the rich sucrose in tiger nut meal has been a major obstruction to the comprehensive utilization of tiger nut (Cyperus esculentus L.). In this study, for the first time, tiger nut meal was used to producing non-centrifugal sugar (NCS). Three samples - NCS-W1 (NCS prepared by water extraction and concentrated at 115 °C), NCS-W2 (NCS prepared by water extraction and concentrated at 135 °C), and NCS-E (NCS prepared by 70 % ethanol-water extraction and concentrated at 115 °C) were obtained, with yields of 14.25-14.59 %. These samples and sugarcane NCS products (NCS-C1, NCS-C2, NCS-L) were compared and analyzed in terms of color, pH, turbidity, soluble solid content, and proximate composition. Their Fourier-transformed infrared spectra, crystal patterns, and thermal stabilities were also analyzed. The NCS-W1, -W2, and -E showed excellent performance, and they were better than sugarcane NCS products in terms of free radical scavenging ability and cytoprotective effects. Differences in phenolic acid composition, flavonoid composition, amino acid, mineral content, and vitamins C and E content were also analyzed. This work demonstrates that tiger nut meal might be a new source of NCS. As such it would contribute to the full utilization of tiger nut.


Subject(s)
Cyperus , Saccharum , Sugars/metabolism , Cyperus/chemistry , Vitamins , Water/metabolism
2.
Oncol Rep ; 47(4)2022 04.
Article in English | MEDLINE | ID: mdl-35211762

ABSTRACT

Cepharanthine, a biscoclaurine alkaloid isolated from the roots of Stephania cephalantha Hayata, has been reported to demonstrate antitumor activity across multiple cancer types; however, the mechanisms are still under investigation. High transcriptional responses by both the Hedgehog and Wnt pathways are frequently associated with specific human cancers, including liver cancer. To investigate whether these signaling pathways are involved in the pharmaceutical action of cepharanthine, we investigated Hedgehog and Wnt signaling in models of liver cancer treated with a semi­synthetic cepharanthine derivative, cepharanthine hydrochloride (CH), in vitro and in vivo. By using MTT cytotoxic, scratch, Transwell, colony formation and flow cytometry assays, the pharmaceutical effect of CH was assessed. The compound was found to inhibit cellular proliferation and invasion, and promote apoptosis. Subsequent mechanistic investigations revealed that CH suppressed the Hedgehog/Gli1 signaling pathway by inhibiting Gli1 transcription and its transcriptional activity. CH also inhibited Wnt/ß­catenin signaling, and the pathway was found to be an upstream regulator of Hedgehog signaling in CH­treated liver cancer cells. Finally, the antitumor effects of CH were demonstrated in an in vivo xenograft tumor model. Immunohistochemical analysis indicated that Gli1 protein levels were diminished in CH­treated xenografts, compared with that noted in the controls. In summary, our results highlight a novel pharmaceutical antitumor mechanism of cepharanthine and provide support for CH as a clinical therapy for refractory liver cancer and other Wnt/Hedgehog­driven cancers.


Subject(s)
Hedgehog Proteins , Liver Neoplasms , Apoptosis , Benzylisoquinolines , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms/drug therapy , Wnt Signaling Pathway , beta Catenin
3.
Int J Parasitol ; 49(9): 697-704, 2019 08.
Article in English | MEDLINE | ID: mdl-31254529

ABSTRACT

Trichomonas vaginalis is a primary urogenital parasite that causes trichomoniasis, a common sexually transmitted disease. As the first line of host defense, vaginal epithelial cells play critical roles in orchestrating vaginal innate immunity and modulate intracellular Cl- homeostasis via the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that plays positive roles in regulating nuclear factor-κB (NF-κB) signalling. However, the association between T. vaginalis infection and intracellular Cl- disequilibrium remains elusive. This study showed that after T. vaginalis infection, CFTR was markedly down-regulated by cysteine proteases in vaginal epithelial cells. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to NF-κB signalling activation via serum- and glucocorticoid-inducible kinase-1. Moreover, heightened [Cl-]i and activated NF-κB signalling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP through NF-κB-mediated up-regulation of phosphodiesterase 4. The results conclusively revealed that the intracellular Cl- of the human vaginal epithelium could be dynamically modulated by T. vaginalis, which contributed to mediation of epithelial inflammation in the human vagina.


Subject(s)
Chlorides/metabolism , Trichomonas Vaginitis/prevention & control , Trichomonas vaginalis/drug effects , Vagina/pathology , Blotting, Western , Cell Line , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cysteine Proteases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Epithelium/metabolism , Epithelium/parasitology , Epithelium/pathology , Female , Humans , Immediate-Early Proteins/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Real-Time Polymerase Chain Reaction , Trichomonas Vaginitis/parasitology , Vagina/metabolism , Vagina/parasitology
4.
Mucosal Immunol ; 11(4): 1149-1157, 2018 07.
Article in English | MEDLINE | ID: mdl-29545647

ABSTRACT

Airway epithelial cells harbor the capacity of active Cl- transepithelial transport and play critical roles in modulating innate immunity. However, whether intracellular Cl- accumulation contributes to relentless airway inflammation remains largely unclear. This study showed that, in airway epithelial cells, intracellular Cl- concentration ([Cl-]i) was increased after Pseudomonas aeruginosa lipopolysaccharide (LPS) stimulation via nuclear factor-κB (NF-κB)-phosphodiesterase 4D (PDE4D)-cAMP signaling pathways. Clamping [Cl-]i at high levels or prolonged treatment with LPS augmented serum- and glucocorticoid-inducible protein kinase 1 (SGK1) phosphorylation and subsequently triggered NF-κB activation in airway epithelial cells, whereas inhibition of SGK1 abrogated airway inflammation in vitro and in vivo. Furthermore, Cl--SGK1 signaling pathway was pronouncedly activated in patients with bronchiectasis, a chronic airway inflammatory disease. Conversely, hydrogen sulfide (H2S), a sulfhydryl-containing gasotransmitter, confers anti-inflammatory effects through decreasing [Cl-]i via activation of cystic fibrosis transmembrane conductance regulator (CFTR). Our study confirms that intracellular Cl- is a crucial mediator of sustained airway inflammation. Medications that abrogate excessively increased intracellular Cl- may offer novel targets for the management of airway inflammatory diseases.


Subject(s)
Bronchiectasis/immunology , Chlorides/metabolism , Inflammation/immunology , Intracellular Space/metabolism , Pseudomonas aeruginosa/immunology , Respiratory Mucosa/immunology , Adult , Animals , Cell Line , Female , Humans , Immediate-Early Proteins/metabolism , Immunity, Innate , Lipopolysaccharides/immunology , Male , Mice , Mice, Inbred Strains , Middle Aged , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Respiratory Mucosa/pathology , Signal Transduction
5.
PLoS One ; 12(5): e0178226, 2017.
Article in English | MEDLINE | ID: mdl-28542554

ABSTRACT

Sodium tanshinone IIA sulfonate (STS) is a derivate of tanshinone IIA, a lipophilic compound in Salvia miltiorrhiza. This study aimed to investigate the effect of STS on ion transport in mouse tracheal epithelium and the mechanisms underlying it. Short-circuit current (Isc) was measured to evaluate the effect of STS on transepithelial ion transport. Intracellular Ca2+ imaging was performed to observe intracellular Ca2+ concentration ([Ca2+]i) changes induced by STS in primary cultured mouse tracheal epithelial cells. Results showed that the apical application of STS at mouse trachea elicited an increase of Isc, which was abrogated by atropine, an antagonist of muscarinic acetylcholine receptor (mAChR). By removing ambient Cl- or applying blockers of Ca2+-activated Cl- channel (CaCC), the response of STS-induced Isc was suppressed. Moreover, STS elevated the [Ca2+]i in mouse tracheal epithelial cells. As a result, STS stimulated Cl- secretion in mouse tracheal epithelium via CaCC in an mAChR-dependent way. Due to the critical role of Cl- secretion in airway hydration, our findings suggested that STS may be used to ameliorate the airway dehydration symptom in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).


Subject(s)
Calcium/metabolism , Chlorides/metabolism , Epithelium/metabolism , Phenanthrenes/pharmacology , Trachea/metabolism , Animals , Cells, Cultured , Epithelium/drug effects , Epithelium/growth & development , Female , Ion Transport/drug effects , Male , Mice , Trachea/drug effects , Trachea/growth & development
6.
Planta Med ; 83(7): 624-630, 2017 May.
Article in English | MEDLINE | ID: mdl-27936472

ABSTRACT

Sodium tanshinone IIA sulphonate, a water-soluble derivative of tanshinone IIA, has been proven to possess versatile biological properties, but its pharmacological effect on tracheal smooth muscle remains elusive. This paper presents a study on the relaxant effect and underlying mechanisms of sodium tanshinone IIA sulphonate on mouse tracheal smooth muscle. The relaxant effect of sodium tanshinone IIA sulphonate was evaluated in mouse tracheal rings using a mechanical recording system. Intracellular Ca2+ concentration was measured in primary cultured tracheal smooth muscle cells using confocal imaging system. The results showed that sodium tanshinone IIA sulphonate induced dose-dependent relaxation of mouse tracheal rings in a ß-adrenoceptor- and epithelium-independent manner. Pretreatment with the ATP-sensitive K+ channel blocker glibenclamide partly attenuated the relaxation response. Administration of sodium tanshinone IIA sulphonate notably inhibited the extracellular Ca2+-induced contraction. High KCl or carbachol-evoked elevation in the intracellular Ca2+ concentration was also abrogated by sodium tanshinone IIA sulphonate in tracheal smooth muscle cells. In conclusion, the tracheal relaxant effect of sodium tanshinone IIA sulphonate was independent of ß-adrenoceptor and airway epithelium, mediated primarily by inhibition of extracellular Ca2+ influx via L-type voltage-dependent Ca2+ channels and partially by activation of the ATP-sensitive K+ channel. These results indicate the potential therapeutic value of sodium tanshinone IIA sulphonate for asthma treatment.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Muscle, Smooth/drug effects , Parasympatholytics/pharmacology , Phenanthrenes/pharmacology , Salvia miltiorrhiza/chemistry , Animals , Cells, Cultured , Female , Male , Mice , Trachea
7.
Eur J Pharmacol ; 741: 55-63, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25034810

ABSTRACT

Recent studies have suggested that hydrogen sulfide (H2S), an important endogenous signaling gaseous molecule, participates in relaxation of smooth muscle. Nevertheless, the mechanism of this relaxation effect on respiratory system is still unclear. The present study aims to investigate the physiological function as well as cellular mechanism of H2S in tracheal smooth muscle. Application of the H2S donor, sodium hydrosulphide (NaHS) and the precursor of H2S, l-cysteine (l-Cys) induced mouse tracheal smooth muscle (TSM) relaxation in an epithelium-independent manner. The relaxation of TSM induced by NaHS was abrogated by iberiotoxin (IbTX), the large conductance calcium activated potassium channel (BKCa) blocker. In primary cultured mouse TSM cells, NaHS remarkably increased potassium outward currents in whole-cell patch clamp, hyperpolarized TSM cells and inhibited the calcium influx. All of these effects were significantly blocked by IbTX. Consistent with the results in vitro, administration of NaHS in vivo also reduced airway hyperresponsiveness in Ovalbumin (OVA)-challenged asthmatic mice. Our present study indicates that NaHS can induce mouse TSM relaxation by activating BKCa. These observations reveal the physiological function of H2S in airway, which provides a promising pharmacological target for the treatment of asthma and other respiratory diseases associated with over-contraction of TSM.


Subject(s)
Hydrogen Sulfide/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/physiology , Muscle Relaxation/physiology , Muscle, Smooth/physiology , Trachea/physiology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Male , Mice , Muscle Relaxation/drug effects , Muscle, Smooth/cytology , Muscle, Smooth/drug effects , Organ Culture Techniques , Trachea/cytology , Trachea/drug effects
8.
PLoS One ; 8(1): e54494, 2013.
Article in English | MEDLINE | ID: mdl-23372735

ABSTRACT

BACKGROUND: Recent studies suggest that formaldehyde (FA) could be synthesized endogeneously and transient receptor potential (TRP) channel might be the sensor of FA. However, the physiological significance is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated the FA induced epithelial Cl(-) secretion by activation of TRPV-1 channel located in the nerve ending fiber. Exogenously applied FA induced an increase of I(SC) in intact rat trachea tissue but not in the primary cultured epithelial cells. Western blot and immunofluorescence analysis identified TRPV-1 expression in rat tracheal nerve ending. Capsazepine (CAZ), a TRPV-1 specific antagonist significantly blocked the I(SC) induced by FA. The TRPV-1 agonist capsaicin (Cap) induced an increase of I(SC), which was similar to the I(SC) induced by FA. L-703606, an NK-1 specific inhibitor and propranolol, an adrenalin ß receptor inhibitor significantly abolished the I(SC) induced by FA or Cap. In the ion substitute analysis, FA could not induce I(SC) in the absence of extracelluar Cl(-). The I(SC) induced by FA could be blocked by the non-specific Cl(-) channel inhibitor DPC and the CFTR specific inhibitor CFTR(i-172), but not by the Ca(2+)-activated Cl(-) channel inhibitor DIDS. Furthermore, both forskolin, an agonist of adenylate cyclase (AC) and MDL-12330A, an antagonist of AC could block FA-induced I(SC). CONCLUSION: Our results suggest that FA-induced epithelial I(SC) response is mediated by nerve, involving the activation of TRPV-1 and release of adrenalin as well as substance P.


Subject(s)
Chlorides/metabolism , Formaldehyde/pharmacology , Nerve Endings/metabolism , Respiratory Mucosa/metabolism , TRPV Cation Channels/metabolism , Trachea/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Animals , Anions , Biological Transport/drug effects , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cells, Cultured , Colforsin/pharmacology , Epinephrine/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Imines/pharmacology , Male , Nerve Endings/drug effects , Quinuclidines/pharmacology , Rats , Respiratory Mucosa/drug effects , Substance P/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , Trachea/drug effects , ortho-Aminobenzoates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...